Docetaxel Regulates the Interaction of p53 with MDM2 and Sin3A to Suppress MCF-7 Breast Cancer Cells
Keywords:
Apoptosis,, Cancer, Chemotherapy, Docetaxel, MDM2Abstract
Docetaxel is one of the most actively used chemotherapeutic agent in breast cancer which is the most frequent tumor in women. Recent studies propose that blocking the p53-MDM2 interaction may be effective in cancer treatment while the Sin3A mutation enhances cell proliferation in estrogen receptor (ER)-positive breast cancers. We aimed to investigate the effects of docetaxel on gene expression interactions and apoptosis in ER-positive breast cancer cell lines (MCF-7). MCF-7 cells were incubated for 24h with the treatment of escalating molar concentrations of docetaxel. The p53, MDM2 and Sin3A gene expression levels were measured by Real-Time PCR. The MTT assay was used to determine cellular viability. Apoptotic cells were detected by TUNEL. The mRNA expressions of p53, MDM2, and Sin3A increased in the same dose-dependent manner suggesting the highest effective level is 100nM docetaxel concentration (p<0.001). The p53 expression levels were strongly correlated with MDM2 (r=0.9379; p<10-7) and Sin3A (r=0.9965; p<10-13) in untreated, 10nM, 100nM and 1µM docetaxel concentrations. Cell viability of MCF-7 cells decreased dramatically in the 10µM and 100µM docetaxel treatments (p<0.001) and the IC50 value was 10µM. Apoptotic cell density was enhanced with the treatments of 10nM, 100nM, and 1µM docetaxel (p<0.001) in response to the gene expression levels. Our findings suggest that docetaxel directs the MCF-7 breast cancer cells to apoptosis in a dose-dependent manner and may thus further regulate the interaction of tumor suppressor p53 expression, protecting it from MDM2-mediated degradation and inhibiting Sin3A-mediated cell proliferation in compliance with the apoptotic cell density.
References
Al-Abd, A. M., Mahmoud, A. M., El-Sherbiny, G. A., El-Moselhy, M. A., Nofal, S. M., El-Latif, H. A., El-Eraky, W. L., & El-Shemy, H. A. (2011). Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif, 44(6), 591-601. https://doi.org/10.1111/j.1365-2184.2011.00783.x
Collavin, L., Lunardi, A., & Del Sal, G. (2010). p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ, 17(6), 901-911. https://doi.org/10.1038/cdd.2010.35
Cowley, S. M., Iritani, B. M., Mendrysa, S. M., Xu, T., Cheng, P. F., Yada, J., Liggitt, H. D., & Eisenman, R. N. (2005). The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Molecular and cellular biology, 25(16), 6990-7004.
Dumontet, C., & Jordan, M. A. (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature Reviews Drug Discovery, 9(10), 790-803.
https://doi.org/10.1038/nrd3253
Ellison-Zelski, S. J., & Alarid, E. T. (2010). Maximum growth and survival of estrogen receptor-alpha positive breast cancer cells requires the Sin3A transcriptional repressor. Mol Cancer, 9, 263. https://doi.org/10.1186/1476-4598-9-263
Freedman, D. A., Wu, L., & Levine, A. J. (1999). Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 55(1), 96-107.
Gambi, G., Di Simone, E., Basso, V., Ricci, L., Wang, R., Verma, A., Elemento, O., Ponzoni, M., Inghirami, G., Icardi, L., & Mondino, A. (2019). The Transcriptional Regulator Sin3A Contributes to the Oncogenic Potential of STAT3. Cancer Research, 79(12), 3076-3087. https://doi.org/10.1158/0008-5472.CAN-18-0359
Gan, L., Wang, J., Xu, H., & Yang, X. (2011). Resistance to docetaxel‐induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. The Prostate, 71(11), 1158-1166.
Hirata, T., Ozaki, S., Tabata, M., Iwamoto, T., Hinotsu, S., Hamada, A., Motoki, T., Nogami, T., Shien, T., Taira, N., Matsuoka, J., & Doihara, H. (2021). A Multicenter Study of Docetaxel at a Dose of 100 mg/m2 in Japanese Patients with Advanced or Recurrent Breast Cancer. Intern Med, 60(8), 1183-1190. https://doi.org/10.2169/internalmedicine.5089-20
Jayaprakash, S., Le, L. T. M., Sander, B., & Golas, M. M. (2021). Expression of the Neural REST/NRSF-SIN3 Transcriptional Corepressor Complex as a Target for Small-Molecule Inhibitors. Mol Biotechnol, 63(1), 53-62. https://doi.org/10.1007/s12033-020-00283-7
Kadamb, R., Mittal, S., Bansal, N., Batra, H., & Saluja, D. (2013). Sin3: insight into its transcription regulatory functions. Eur J Cell Biol, 92(8-9), 237-246. https://doi.org/10.1016/j.ejcb.2013.09.001
Konopleva, M., Martinelli, G., Daver, N., Papayannidis, C., Wei, A., Higgins, B., Ott, M., Mascarenhas, J., & Andreeff, M. (2020). MDM2 inhibition: an important step forward in cancer therapy. Leukemia, 34(11), 2858-2874. https://doi.org/10.1038/s41375-020-0949-z
Levine, A. J. (2020). p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer, 20(8), 471-480. https://doi.org/10.1038/s41568-020-0262-1
Lewis, M. J., Liu, Jianzhong., Libby, Emily F., Lee, M., Crawford, Nigel P. S., Hurst, Douglas R. (2016). SIN3A and SIN3B differentially regulate breast cancer metastasis. Oncotarget, 7(48), 78713-78725. https://doi.org/10.18632/oncotarget.12805.
McGrogan, B. T., Gilmartin, B., Carney, D. N., & McCann, A. (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, 1785(2), 96-132. https://doi.org/10.1016/j.bbcan.2007.10.004
Murphy, M., Ahn, J., Walker, K. K., Hoffman, W. H., Evans, R. M., Levine, A. J., & George, D. L. (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev, 13(19), 2490-2501.
Park, S. H., Kim, H., Kwak, S., Jeong, J. H., Lee, J., Hwang, J. T., Choi, H. K., & Choi, K. C. (2020). HDAC3-ERalpha Selectively Regulates TNF-alpha-Induced Apoptotic Cell Death in MCF-7 Human Breast Cancer Cells via the p53 Signaling Pathway. Cells, 9(5). https://doi.org/10.3390/cells9051280
Pile, L. A., Spellman, P. T., Katzenberger, R. J., & Wassarman, D. A. (2003). The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. Journal of Biological Chemistry, 278(39), 37840-37848.
Seker, S., Guven, C., Akcakaya, H., Bahtiyar, N., Akbas, F., & Onaran, I. (2018). Evidence that Extreme Dilutions of Paclitaxel and Docetaxel Alter Gene Expression of In Vitro Breast Cancer Cells. Homeopathy, 107(1), 32-39. https://doi.org/10.1055/s-0037-1618585
Sjostrom, J., Blomqvist, C., Heikkila, P., Boguslawski, K. V., Raisanen-Sokolowski, A., Bengtsson, N. O., Mjaaland, I., Malmstrom, P., Ostenstadt, B., Bergh, J., Wist, E., Valvere, V., & Saksela, E. (2000). Predictive value of p53, mdm-2, p21, and mib-1 for chemotherapy response in advanced breast cancer. Clin Cancer Res, 6(8), 3103-3110.
Turbin, D. A., Cheang, M. C., Bajdik, C. D., Gelmon, K. A., Yorida, E., De Luca, A., Nielsen, T. O., Huntsman, D. G., & Gilks, C. B. (2006). MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol, 19(1), 69-74. https://doi.org/10.1038/modpathol.3800484
Vazquez, A., Bond, E. E., Levine, A. J., & Bond, G. L. (2008). The genetics of the p53 pathway, apoptosis and cancer therapy. Nature Reviews Drug Discovery, 7(12), 979-987. https://doi.org/10.1038/Nrd2656
Wang, S., Zhao, Y., Aguilar, A., Bernard, D., & Yang, C. Y. (2017). Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges. Cold Spring Harb Perspect Med, 7(5). https://doi.org/10.1101/cshperspect.a026245
Watanabe, K., Yamamoto, S., Sakaguti, S., Isayama, K., Oka, M., Nagano, H., & Mizukami, Y. (2018). A novel somatic mutation of SIN3A detected in breast cancer by whole-exome sequencing enhances cell proliferation through ERalpha expression. Sci Rep, 8(1), 16000. https://doi.org/10.1038/s41598-018-34290-1
Yang, Y., Huang, W., Qiu, R., Liu, R., Zeng, Y., Gao, J., Zheng, Y., Hou, Y., Wang, S., Yu, W., Leng, S., Feng, D., & Wang, Y. (2018). LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J Mol Cell Biol, 10(4), 285-301. https://doi.org/10.1093/jmcb/mjy021
Zhao, P., Li, S., Wang, H., Dang, Y., Wang, L., Liu, T., Wang, S., Li, X., & Zhang, K. (2019). Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1. FASEB J, 33(11), 12541-12553. https://doi.org/10.1096/fj.201901213R
Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L., & Murphy, M. (2001). The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell Biol., 21(12), 3974-3985. https://doi.org/10.1128/MCB.21.12.3974-3985.2001
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Natural Products and Biotechnology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.