Docetaxel Regulates the Interaction of p53 with MDM2 and Sin3A to Suppress MCF-7 Breast Cancer Cells

Authors

Keywords:

Apoptosis,, Cancer, Chemotherapy, Docetaxel, MDM2

Abstract

Docetaxel is one of the most actively used chemotherapeutic agent in breast cancer which is the most frequent tumor in women. Recent studies propose that blocking the p53-MDM2 interaction may be effective in cancer treatment while the Sin3A mutation enhances cell proliferation in estrogen receptor (ER)-positive breast cancers. We aimed to investigate the effects of docetaxel on gene expression interactions and apoptosis in ER-positive breast cancer cell lines (MCF-7). MCF-7 cells were incubated for 24h with the treatment of escalating molar concentrations of docetaxel. The p53, MDM2 and Sin3A gene expression levels were measured by Real-Time PCR. The MTT assay was used to determine cellular viability. Apoptotic cells were detected by TUNEL. The mRNA expressions of p53, MDM2, and Sin3A increased in the same dose-dependent manner suggesting the highest effective level is 100nM docetaxel concentration (p<0.001). The p53 expression levels were strongly correlated with MDM2 (r=0.9379; p<10-7) and Sin3A (r=0.9965; p<10-13) in untreated, 10nM, 100nM and 1µM docetaxel concentrations. Cell viability of MCF-7 cells decreased dramatically in the 10µM and 100µM docetaxel treatments (p<0.001) and the IC50 value was 10µM. Apoptotic cell density was enhanced with the treatments of 10nM, 100nM, and 1µM docetaxel (p<0.001) in response to the gene expression levels. Our findings suggest that docetaxel directs the MCF-7 breast cancer cells to apoptosis in a dose-dependent manner and may thus further regulate the interaction of tumor suppressor p53 expression, protecting it from MDM2-mediated degradation and inhibiting Sin3A-mediated cell proliferation in compliance with the apoptotic cell density.

Author Biographies

Nezahat Kurt, Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey

Department of Medical Biochemistry, Faculty of Medicine, Erzincan Binali Yildirim University

Nuri Bakan, Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey

Department of Medical Biochemistry, Faculty of Medicine, Ataturk University, Erzurum, Turkey

Adem Kara, Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey

Histology and Embryology, Faculty of Veterinary, Bingol University, Bingol, Turkey

Seçkin Özkanlar, Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, Turkey

Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, Turkey

Eda Balkan, Department of Medical Biology, Faculty of Medicine, Ataturk University, Erzurum, Turkey

Department of Medical Biology, Faculty of Medicine, Ataturk University, Erzurum, Turkey

Fatma Betül Özgeriş, Department of Nutrition and Dietetics, Faculty of Healthy Sciences, Ataturk University, Erzurum, Turkey

Department of Nutrition and Dietetics, Faculty of Health Sciences, Ataturk University, Turkey

References

Al-Abd, A. M., Mahmoud, A. M., El-Sherbiny, G. A., El-Moselhy, M. A., Nofal, S. M., El-Latif, H. A., El-Eraky, W. L., & El-Shemy, H. A. (2011). Resveratrol enhances the cytotoxic profile of docetaxel and doxorubicin in solid tumour cell lines in vitro. Cell Prolif, 44(6), 591-601. https://doi.org/10.1111/j.1365-2184.2011.00783.x

Collavin, L., Lunardi, A., & Del Sal, G. (2010). p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ, 17(6), 901-911. https://doi.org/10.1038/cdd.2010.35

Cowley, S. M., Iritani, B. M., Mendrysa, S. M., Xu, T., Cheng, P. F., Yada, J., Liggitt, H. D., & Eisenman, R. N. (2005). The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Molecular and cellular biology, 25(16), 6990-7004.

Dumontet, C., & Jordan, M. A. (2010). Microtubule-binding agents: a dynamic field of cancer therapeutics. Nature Reviews Drug Discovery, 9(10), 790-803.

https://doi.org/10.1038/nrd3253

Ellison-Zelski, S. J., & Alarid, E. T. (2010). Maximum growth and survival of estrogen receptor-alpha positive breast cancer cells requires the Sin3A transcriptional repressor. Mol Cancer, 9, 263. https://doi.org/10.1186/1476-4598-9-263

Freedman, D. A., Wu, L., & Levine, A. J. (1999). Functions of the MDM2 oncoprotein. Cell Mol Life Sci, 55(1), 96-107.

Gambi, G., Di Simone, E., Basso, V., Ricci, L., Wang, R., Verma, A., Elemento, O., Ponzoni, M., Inghirami, G., Icardi, L., & Mondino, A. (2019). The Transcriptional Regulator Sin3A Contributes to the Oncogenic Potential of STAT3. Cancer Research, 79(12), 3076-3087. https://doi.org/10.1158/0008-5472.CAN-18-0359

Gan, L., Wang, J., Xu, H., & Yang, X. (2011). Resistance to docetaxel‐induced apoptosis in prostate cancer cells by p38/p53/p21 signaling. The Prostate, 71(11), 1158-1166.

Hirata, T., Ozaki, S., Tabata, M., Iwamoto, T., Hinotsu, S., Hamada, A., Motoki, T., Nogami, T., Shien, T., Taira, N., Matsuoka, J., & Doihara, H. (2021). A Multicenter Study of Docetaxel at a Dose of 100 mg/m2 in Japanese Patients with Advanced or Recurrent Breast Cancer. Intern Med, 60(8), 1183-1190. https://doi.org/10.2169/internalmedicine.5089-20

Jayaprakash, S., Le, L. T. M., Sander, B., & Golas, M. M. (2021). Expression of the Neural REST/NRSF-SIN3 Transcriptional Corepressor Complex as a Target for Small-Molecule Inhibitors. Mol Biotechnol, 63(1), 53-62. https://doi.org/10.1007/s12033-020-00283-7

Kadamb, R., Mittal, S., Bansal, N., Batra, H., & Saluja, D. (2013). Sin3: insight into its transcription regulatory functions. Eur J Cell Biol, 92(8-9), 237-246. https://doi.org/10.1016/j.ejcb.2013.09.001

Konopleva, M., Martinelli, G., Daver, N., Papayannidis, C., Wei, A., Higgins, B., Ott, M., Mascarenhas, J., & Andreeff, M. (2020). MDM2 inhibition: an important step forward in cancer therapy. Leukemia, 34(11), 2858-2874. https://doi.org/10.1038/s41375-020-0949-z

Levine, A. J. (2020). p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer, 20(8), 471-480. https://doi.org/10.1038/s41568-020-0262-1

Lewis, M. J., Liu, Jianzhong., Libby, Emily F., Lee, M., Crawford, Nigel P. S., Hurst, Douglas R. (2016). SIN3A and SIN3B differentially regulate breast cancer metastasis. Oncotarget, 7(48), 78713-78725. https://doi.org/10.18632/oncotarget.12805.

McGrogan, B. T., Gilmartin, B., Carney, D. N., & McCann, A. (2008). Taxanes, microtubules and chemoresistant breast cancer. Biochim. Biophys. Acta, 1785(2), 96-132. https://doi.org/10.1016/j.bbcan.2007.10.004

Murphy, M., Ahn, J., Walker, K. K., Hoffman, W. H., Evans, R. M., Levine, A. J., & George, D. L. (1999). Transcriptional repression by wild-type p53 utilizes histone deacetylases, mediated by interaction with mSin3a. Genes Dev, 13(19), 2490-2501.

Park, S. H., Kim, H., Kwak, S., Jeong, J. H., Lee, J., Hwang, J. T., Choi, H. K., & Choi, K. C. (2020). HDAC3-ERalpha Selectively Regulates TNF-alpha-Induced Apoptotic Cell Death in MCF-7 Human Breast Cancer Cells via the p53 Signaling Pathway. Cells, 9(5). https://doi.org/10.3390/cells9051280

Pile, L. A., Spellman, P. T., Katzenberger, R. J., & Wassarman, D. A. (2003). The SIN3 deacetylase complex represses genes encoding mitochondrial proteins: implications for the regulation of energy metabolism. Journal of Biological Chemistry, 278(39), 37840-37848.

Seker, S., Guven, C., Akcakaya, H., Bahtiyar, N., Akbas, F., & Onaran, I. (2018). Evidence that Extreme Dilutions of Paclitaxel and Docetaxel Alter Gene Expression of In Vitro Breast Cancer Cells. Homeopathy, 107(1), 32-39. https://doi.org/10.1055/s-0037-1618585

Sjostrom, J., Blomqvist, C., Heikkila, P., Boguslawski, K. V., Raisanen-Sokolowski, A., Bengtsson, N. O., Mjaaland, I., Malmstrom, P., Ostenstadt, B., Bergh, J., Wist, E., Valvere, V., & Saksela, E. (2000). Predictive value of p53, mdm-2, p21, and mib-1 for chemotherapy response in advanced breast cancer. Clin Cancer Res, 6(8), 3103-3110.

Turbin, D. A., Cheang, M. C., Bajdik, C. D., Gelmon, K. A., Yorida, E., De Luca, A., Nielsen, T. O., Huntsman, D. G., & Gilks, C. B. (2006). MDM2 protein expression is a negative prognostic marker in breast carcinoma. Mod Pathol, 19(1), 69-74. https://doi.org/10.1038/modpathol.3800484

Vazquez, A., Bond, E. E., Levine, A. J., & Bond, G. L. (2008). The genetics of the p53 pathway, apoptosis and cancer therapy. Nature Reviews Drug Discovery, 7(12), 979-987. https://doi.org/10.1038/Nrd2656

Wang, S., Zhao, Y., Aguilar, A., Bernard, D., & Yang, C. Y. (2017). Targeting the MDM2-p53 Protein-Protein Interaction for New Cancer Therapy: Progress and Challenges. Cold Spring Harb Perspect Med, 7(5). https://doi.org/10.1101/cshperspect.a026245

Watanabe, K., Yamamoto, S., Sakaguti, S., Isayama, K., Oka, M., Nagano, H., & Mizukami, Y. (2018). A novel somatic mutation of SIN3A detected in breast cancer by whole-exome sequencing enhances cell proliferation through ERalpha expression. Sci Rep, 8(1), 16000. https://doi.org/10.1038/s41598-018-34290-1

Yang, Y., Huang, W., Qiu, R., Liu, R., Zeng, Y., Gao, J., Zheng, Y., Hou, Y., Wang, S., Yu, W., Leng, S., Feng, D., & Wang, Y. (2018). LSD1 coordinates with the SIN3A/HDAC complex and maintains sensitivity to chemotherapy in breast cancer. J Mol Cell Biol, 10(4), 285-301. https://doi.org/10.1093/jmcb/mjy021

Zhao, P., Li, S., Wang, H., Dang, Y., Wang, L., Liu, T., Wang, S., Li, X., & Zhang, K. (2019). Sin3a regulates the developmental progression through morula-to-blastocyst transition via Hdac1. FASEB J, 33(11), 12541-12553. https://doi.org/10.1096/fj.201901213R

Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L., & Murphy, M. (2001). The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol. Cell Biol., 21(12), 3974-3985. https://doi.org/10.1128/MCB.21.12.3974-3985.2001

Downloads

Published

2021-12-15

How to Cite

Kurt, N., Bakan, N., Kara, A., Özkanlar, S., Balkan, E., & Özgeriş, F. B. (2021). Docetaxel Regulates the Interaction of p53 with MDM2 and Sin3A to Suppress MCF-7 Breast Cancer Cells. Natural Products and Biotechnology, 1(2), 64–74. Retrieved from https://natprobiotech.com/index.php/natprobiotech/article/view/16

Issue

Section

Research Article

Most read articles by the same author(s)