Biosynthetic Capacity of Artemisia annua L. “Hairy” Roots



Artemisia annua, , carbohydrates, amino acids


Transformation using Agrobacterium rhizogenes is a widely used method for obtaining “hairy” roots of different plant species. Such roots are characterized by rapid growth under simple growing conditions. Incorporation of bacterial rol genes into the plant genome after the transformation can lead to changes in bioactive compounds synthesis in "hairy" roots. Analysis of the content of carbohydrates and amino acids in Artemisia annua L. “hairy” roots was the aim of the work Inulin content in transgenic root lines increased by 1.52 - 1.86 folds compared to the roots of the control plants. The “hairy” roots lines, in contrast, to the control plants, did not contain inositol. There was a decreased glutamine (up to 5.92 folds) and increased arginine hydrochloride (up to 1.72 folds) and proline (up to 2.53 folds) content in transformed root lines. Seven of the total identified amino acids are indispensable amino acids: valine, isoleucine, leucine, lysine, threonine, tryptophan, and phenylalanine. The results of the study demonstrated that the genetic transformation of A. annua plants has led to changes in the accumulation of carbohydrates and amino acids (both quantitatively and qualitatively). “Hairy” root lines with increased content of individual carbohydrates and amino acids were identified.


Aires, A., Fernandes, C., Carvalho, R., Bennett, R. N., Saavedra, M. J., & Rosa, E. A. S. (2011). Seasonal Effects on Bioactive Compounds and Antioxidant Capacity of Six Economically Important Brassica Vegetables. Molecules, 16(8), 6816–6832.

Anwar, A., She, M., Wang, K., Riaz, B., & Ye, X. (2018). Biological Roles of Ornithine Aminotransferase (OAT) in Plant Stress Tolerance: Present Progress and Future Perspectives. International Journal of Molecular Sciences 2018, Vol. 19, Page 3681, 19(11), 3681.

Balasubramanian, M., Anbumegala, M., Surendran, R., Arun, M., & Shanmugam, G. (2018). Elite hairy roots of Raphanus sativus (L.) as a source of antioxidants and flavonoids. 3 Biotech, 8(2), 128.

Brown, G. D. (2010). The Biosynthesis of Artemisinin (Qinghaosu) and the Phytochemistry of Artemisia annua L. (Qinghao). Molecules 2010, Vol. 15, Pages 7603-7698, 15(11), 7603–7698.

Caleffi, E. R., Krausová, G., Hyršlová, I., Paredes, L. L. R., dos Santos, M. M., Sassaki, G. L., Gonçalves, R. A. C., & de Oliveira, A. J. B. (2015). Isolation and prebiotic activity of inulin-type fructan extracted from Pfaffia glomerata (Spreng) Pedersen roots. International Journal of Biological Macromolecules, 80, 392–399.

Cardillo, A. B., Rodriguez Talou, J., & Giulietti, A. M. (2016). Establishment, Culture, and Scale-up of Brugmansia candida Hairy Roots for the Production of Tropane Alkaloids. Methods in Molecular Biology, 1391, 173–186.

Cérantola, S., Kervarec, N., Pichon, R., Magné, C., Bessieres, M. A., & Deslandes, E. (2004). NMR characterisation of inulin-type fructooligosaccharides as the major water-soluble carbohydrates from Matricaria maritima (L.). Carbohydrate Research, 339(14), 2445–2449.

Corrêa-Ferreira, M. L., Noleto, G. R., & Oliveira Petkowicz, C. L. (2014). Artemisia absinthium and Artemisia vulgaris: A comparative study of infusion polysaccharides. Carbohydrate Polymers, 102(1), 738–745.

Daddy, N. B., Kalisya, L. M., Bagire, P. G., Watt, R. L., Towler, M. J., & Weathers, P. J. (2017). Artemisia annua dried leaf tablets treated malaria resistant to ACT and i.v. artesunate: Case reports. Phytomedicine, 32, 37–40.

de Vries, P. J., & Dien, T. K. (1996). Clinical Pharmacology and Therapeutic Potential of Artemisinin and its Derivatives in the Treatment of Malaria. Drugs 1996 52:6, 52(6), 818–836.

Drobot, K. O., Matvieieva, N. А., & Shakhovsky, A. M. (2016). Features of Agrobacterium rhizogenes-mediated genetic transformation of Artemisia vulgaris L., Artemisia annua L. and Ruta graveolens L. medicinal plants. Faktori Eksperimental’noi Evolucii Organizmiv, 19, 117–120.

Drobot, K. O., Matvieieva, N. A., Ostapchuk, A. M., Kharkhota, M. A., & Duplij, V. P. (2017). Study of artemisinin and sugar accumulation in Artemisia vulgaris and Artemisia dracunculus “hairy” root cultures. Preparative Biochemistry & Biotechnology, 47(8), 776–781.

Gabr, A. M. M., Sytar, O., Ghareeb, H., & Brestic, M. (2019). Accumulation of amino acids and flavonoids in hairy root cultures of common buckwheat (Fagopyrum esculentum). Physiology and Molecular Biology of Plants, 25(3), 787–797.

Goldraij, A., & Polacco, J. C. (2000). Arginine degradation by arginase in mitochondria of soybean seedling cotyledons. Planta 2000 210:4, 210(4), 652–658.

Haynes, R. (2006). From Artemisinin to New Artemisinin Antimalarials: Biosynthesis, Extraction, Old and New Derivatives, Stereochemistry and Medicinal Chemistry Requirements. Current Topics in Medicinal Chemistry, 6(5), 509–537.

Kim, J. K., Shin, E. C., Lim, H. J., Choi, S. J., Kim, C. R., Suh, S. H., Kim, C. J., Park, G. G., Park, C. S., Kim, H. K., Choi, J. H., Song, S. W., & Shin, D. H. (2015). Characterization of Nutritional Composition, Antioxidative Capacity, and Sensory Attributes of Seomae Mugwort, a Native Korean Variety of Artemisia argyi H. Lév. & Vaniot. Journal of Analytical Methods in Chemistry, 2015, 916346.

Koo, K. A., Kwak, J. H., Lee, K. R., Zee, O. P., Woo, E. R., Park, H. K., & Youn, H. J. (1994). Antitumor and immunomodulating activities of the polysaccharide fractions from Artemisia selengensis and Artemisia iwayomogi. Archives of Pharmacal Research, 17(5), 371–374.

Lee, J. A., Sung, H. N., Jeon, C. H., Gill, B. C., Oh, G. S., Youn, H. J., & Park, J. H. (2008). AIP1, a carbohydrate fraction from Artemisia iwayomogi, modulates the functional differentiation of bone marrow-derived dendritic cells. International Immunopharmacology, 8(4), 534–541.

Mashati, P., Esmaeili, S., Dehghan-Nayeri, N., Bashash, D., Darvishi, M., & Gharehbaghian, A. (2019). Methanolic Extract from Aerial Parts of Artemisia Annua L. Induces Cytotoxicity and Enhances Vincristine-Induced Anticancer Effect in Pre-B Acute Lymphoblastic Leukemia Cells. International Journal of Hematology-Oncology and Stem Cell Research, 13(3), 132–139.

Matvieieva, N., Drobot, K., Duplij, V., Ratushniak, Y., Shakhovsky, A., Kyrpa-Nesmiian, T., Mickevičius, S., & Brindza, J. (2019). Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots. Preparative Biochemistry and Biotechnology, 49(1), 82–87.

Mi, Y., Zhu, Z., Qian, G., Li, Y., Meng, X., Xue, J., Chen, Q., Sun, W., & Shi, Y. (2020). Inducing Hairy Roots by Agrobacterium rhizogenes-Mediated Transformation in Tartary Buckwheat (Fagopyrum tataricum). JoVE (Journal of Visualized Experiments), 2020(157), e60828.

Mirbehbahani, F. S., Hejazi, F., Najmoddin, N., & Asefnejad, A. (2020). Artemisia annua L. as a promising medicinal plant for powerful wound healing applications. Progress in Biomaterials 2020 9:3, 9(3), 139–151.

Mukatay, U., Kemelbek, M., Seilkhan, A., Ross, S. A., & Zhubanova, A. A. (2021). Study of amino acids in Artemisia heptapotamica Poljak and Artemisia albida Willd. E3S Web of Conferences, 254, 03006.

Murashige, T., & Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum, 15(3), 473–497.

Nair, M. S., Huang, Y., Fidock, D. A., Polyak, S. J., Wagoner, J., Towler, M. J., & Weathers, P. J. (2021). Artemisia annua L. extracts inhibit the in vitro replication of SARS-CoV-2 and two of its variants. Journal of Ethnopharmacology, 274, 114016.

Ochkur, A. V., Kovaleva, A. M., & Kolesnik, Y. S. (2013). Amino-Acid Composition of Subgenus Artemisia Herbs. Chemistry of Natural Compounds 2013 49:3, 49(3), 589–591.

Pék, Z., Daood, H., Nagyné, M. G., Neményi, A., & Helyes, L. (2013). Effect of environmental conditions and water status on the bioactive compounds of broccoli. Central European Journal of Biology, 8(8), 777–787.

Rassias, D. J., & Weathers, P. J. (2019). Dried leaf Artemisia annua efficacy against non-small cell lung cancer. Phytomedicine, 52, 247–253.

Shysh, S. N., Shutava, H. G., Skakovski, E. D., & Tychinskaya, L. Y. (2017). NMR Investigation of the Composition of Aqueous Extracts from Pot Marigold Inflorescence. Proceedings of the National Academy of Sciences of Belarus, Chemical Series, 3, 45–52.

Skakovski, E. D., Tychinskaya, L. Y., Molchanova, O. A., Kolechkina, A. I., Kukharchik, N. V., & Kapichnikova, N. G. (2013). A preliminary estimation of an apple juice composition using the method of a nuclear magnetic resonance. In V. A. Samus et al. (Eds.), Fruit-growing: proceedings (Vol. 25, pp. 469 – 480). Samochvalovitchi, Belarus: Institute for Fruit Growing.

Skakovskii, E. D., Tychinskaya, L. Y., Matveichuk, S. V., Karankevich, E. G., Agabalaeva, E. D., & Reshetnikov, V. N. (2014). NMR Spectroscopy of Aqueous Extracts of Fenugreek (Trigonella foenum-graecum L.). Journal of Applied Spectroscopy 2014 81:4, 81(4), 597–601.

Srivastava, S., & Srivastava, A. K. (2007). Hairy Root Culture for Mass-Production of High-Value Secondary Metabolites. Critical Reviews in Biotechnology, 27(1), 29–43.

Uozumi, N. (2004). Large-Scale Production of Hairy Root. Advances in Biochemical Engineering/Biotechnology, 91, 75–103.

Xie, G., Schepetkin, I. A., Siemsen, D. W., Kirpotina, L. N., Wiley, J. A., & Quinn, M. T. (2008). Fractionation and characterization of biologically-active polysaccharides from Artemisia tripartita. Phytochemistry, 69(6), 1359–1371.

Yang, H., Sun, M., Lin, S., Guo, Y., Yang, Y., Zhang, T., & Zhang, J. (2017). Transcriptome analysis of Crossostephium chinensis provides insight into the molecular basis of salinity stress responses. PLOS ONE, 12(11), e0187124.

Zhang, G. H., Liang, Y. R., Jin, J., Lu, J. L., Borthakur, D., Dong, J. J., & Zheng, X. Q. (2015). Induction of hairy roots by Agrobacterium rhizogenes in relation to L-theanine production in Camellia sinensis. The Journal of Horticultural Science and Biotechnology, 82(4), 636–640.




How to Cite

Shutava, H., Tychinskaya, L., Skakovskii, E., Duplij, V., Ratushniak, Y., & Matvieieva, N. (2021). Biosynthetic Capacity of Artemisia annua L. “Hairy” Roots. Natural Products and Biotechnology, 1(2), 85–95. Retrieved from



Research Article