Genome Wide Analysis and Characterization of NPR-like Gene Family of Phaseolus vulgaris L.
Keywords:
NPR1, SAR, Stress, In silico, Phaseolus vulgaris L.Abstract
Nonexpressor of pathogenesis-related genes 1 (NPR1) could be found in the regulation of pathways of salicylic acid (SA) signal transduction and systemic acquired resistance (SAR) in plants. It has been found that the members of NPR-like gene family are interconnecting with biotic and abiotic stresses in several plants, but it has not yet been performed in common bean. In this study, in silico analyzes of Phaseolus vulgaris L. NPR-like gene family members were performed at the genome level. As a result of these in silico analyzes, four NPR1 genes were identified and it was found that these genes have been located on four different P. vulgaris chromosomes. The length of PvNPR-like proteins ranges from 475-590 amino acid residues. The theoretical isoelectric point (pI) range were found between 5.75-6.36 and all show acidic properties. As a result of phylogenetic analyzes performed between NPR-like genes of P. vulgaris, Glycine max (L.) Merr and Arabidopsis thaliana (L.) Heynh. plants, NPR-like genes were found to be divided into three different groups (A, B and C). It has been determined that PvNPR-like genes contain cis-acting elements that function in many biological processes, including stress and hormone responses. Differences in gene expression levels under salt and drought stress indicated that PvNPR-like genes respond differently under stress conditions. The outcomes of this study will supply the needed basics for understanding the function and evolutionary history of PvNPR-like genes.
References
Agarwal, N., Srivastava, R., Verma, A., Rai, K. M., Singh, B., & Verma, P. C. (2020). Unravelling Cotton Nonexpressor of Pathogenesis Related 1(NPR1)-Like Genes Family: Evolutionary Analysis and Putative Role in Fiber Development and Defense Pathway. Plants, 9(8), 999. https://doi.org/10.3390/plants9080999
Aravind, L., & Koonin, E. V. (1999). Fold prediction and evolutionary analysis of the POZ domain: structural and evolutionary relationship with the potassium channel tetramerization domain 1 1Edited by F. Cohen. Journal of Molecular Biology, 285(4), 1353–1361. https://doi.org/10.1006/jmbi.1998.2394
Bailey, T. L., Williams, N., Misleh, C., & Li, W. W. (2006). MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research, 34(Web Server), W369–W373. https://doi.org/10.1093/nar/gkl198
Bajaj, S., Targolli, J., Liu, L. F., Ho, T. H. D., & Wu, R. (1999). Transgenic approaches to increase dehydration-stress tolerance in plants. Molecular Breeding, 5(6), 493–503. https://doi.org/10.1023/a:1009660413133
Cao, H., Bowling, S. A., Gordon, A. S., & Dong, X. (1994). Characterization of an Arabidopsis Mutant That Is Nonresponsive to Inducers of Systemic Acquired Resistance. The Plant Cell, 6(11), 1583. https://doi.org/10.2307/3869945
Cao, H., Glazebrook, J., Clarke, J. D., Volko, S., & Dong, X. (1997). The Arabidopsis NPR1 Gene That Controls Systemic Acquired Resistance Encodes a Novel Protein Containing Ankyrin Repeats. Cell, 88(1), 57–63. https://doi.org/10.1016/s0092-8674(00)81858-9
Cao, H., Li, X., & Dong, X. (1998). Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proceedings of the National Academy of Sciences, 95(11), 6531–6536. https://doi.org/10.1073/pnas.95.11.6531
Carvalho, D. D. C., Mello, S. C. M. de, Lobo Júnior, M., & Geraldine, A. M. (2011). Biocontrol of seed pathogens and growth promotion of common bean seedlings by Trichoderma harzianum. Pesquisa Agropecuária Brasileira, 46(8), 822–828. https://doi.org/10.1590/s0100 204x2011000800006
Chen, C., Chen, H., Zhang, Y., Thomas, H. R., Frank, M. H., He, Y., & Xia, R. (2020). TBtools: An Integrative Toolkit Developed for Interactive Analyses of Big Biological Data. Molecular Plant, 13(8), 1194–1202. https://doi.org/10.1016/j.molp.2020.06.009
Conesa, A., & Götz, S. (2008). Blast2GO: A Comprehensive Suite for Functional Analysis in Plant Genomics. International Journal of Plant Genomics, 2008, 1–12. https://doi.org/10.1155/2008/619832
Ding, Y., Sun, T., Ao, K., Peng, Y., Zhang, Y., Li, X., & Zhang, Y. (2018). Opposite Roles of Salicylic Acid Receptors NPR1 and NPR3/NPR4 in Transcriptional Regulation of Plant Immunity. Cell, 173(6), 1454-1467.e15. https://doi.org/10.1016/j.cell.2018.03.044
Dong, X. (2001). Genetic dissection of systemic acquired resistance. Current Opinion in Plant Biology, 4(4), 309–314. https://doi.org/10.1016/s1369-5266(00)00178-3
Fu, Z. Q., & Dong, X. (2013). Systemic Acquired Resistance: Turning Local Infection into Global Defense. Annual Review of Plant Biology, 64(1), 839–863. https://doi.org/10.1146/annurev-arplant-042811-105606
Goyal, N., Bhatia, G., Garewal, N., Upadhyay, A., & Singh, K. (2021). Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-08081-4
Gregorio Jorge, J., Villalobos-López, M. A., Chavarría-Alvarado, K. L., Ríos-Meléndez, S., López-Meyer, M., & Arroyo-Becerra, A. (2020). Genome-wide transcriptional changes triggered by water deficit on a drought-tolerant common bean cultivar. BMC Plant Biology, 20(1). https://doi.org/10.1186/s12870-020-02664-1
Hepworth, S. R., Zhang, Y., McKim, S., Li, X., & Haughn, G. W. (2005). BLADE-ON-PETIOLE–Dependent Signaling Controls Leaf and Floral Patterning in Arabidopsis. The Plant Cell, 17(5), 1434–1448. https://doi.org/10.1105/tpc.104.030536
Hiz, M. C., Canher, B., Niron, H., & Turet, M. (2014). Transcriptome Analysis of Salt Tolerant Common Bean (Phaseolus vulgaris L.) under Saline Conditions. PLoS ONE, 9(3), e92598. https://doi.org/10.1371/journal.pone.0092598
Horton, P., Park, K.-J. ., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: protein localization predictor. Nucleic Acids Research, 35(Web Server), W585–W587. https://doi.org/10.1093/nar/gkm259
Hu, B., Jin, J., Guo, A.-Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics, 31(8), 1296–1297. https://doi.org/10.1093/bioinformatics/btu817
Ilhan, E. (2018). Eucalyptus grandis YABBY Transkripsiyon Faktörlerinin Genom Çaplı Analizi (in Turkish). Türkiye Tarımsal Araştırmalar Dergisi, 5(2), 158–166. https://doi.org/10.19159/tutad.408654
Inal, B., Büyük, İ., İlhan, E., & Aras, S. (2017). Genome-wide analysis of Phaseolus vulgaris C2C2-YABBY transcription factors under salt stress conditions. 3 Biotech, 7(5). https://doi.org/10.1007/s13205-017-0933-0
Juretic, N. (2005). The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Research, 15(9), 1292-1297. https://doi.org/10.1101/gr.4064205
Kasapoglu, A., Ilhan, E., Kızılkaya, D., Hossein Pour, T., & Haliloğlu, K. (2020). Sorgum [Sorghum bicolor (L.) Moench] Genomunda BES1 Transkripsiyon Faktör Ailesinin Genom Çaplı Analizi (in Turkish). Türkiye Tarımsal Araştırmalar Dergisi. https://doi.org/10.19159/tutad.671605
Katagiri, F., Lam, E., & Chua, N.-H. (1989). Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature, 340(6236), 727–730. https://doi.org/10.1038/340727a0
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. E. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10(6), 845–858. https://doi.org/10.1038/nprot.2015.053
Kinkema, M., Fan, W., & Dong, X. (2000). Nuclear Localization of NPR1 Is Required for Activation of PR Gene Expression. The Plant Cell, 12(12), 2339. https://doi.org/10.2307/3871233
Kızılkaya, D., Kasapoğlu, A. G., Hossein Pour, A., Haliloğlu, K., Muslu, S., & İlhan, E. (2020). Sorgum bicolor CAMTA Transkripsiyon Faktörlerinin Genom Çaplı Analizi (in Turkish). Atatürk Üniversitesi Ziraat Fakültesi Dergisi. https://doi.org/10.17097/ataunizfd.690138
Lamesch, P., Berardini, T. Z., Li, D., Swarbreck, D., Wilks, C., Sasidharan, R., Muller, R., Dreher, K., Alexander, D. L., Garcia-Hernandez, M., Karthikeyan, A. S., Lee, C. H., Nelson, W. D., Ploetz, L., Singh, S., Wensel, A., & Huala, E. (2012). The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools. Nucleic Acids Research, 40(D1), D1202–D1210. https://doi.org/10.1093/nar/gkr1090
Lescot, M. (2002). PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Research, 30(1), 325–327. https://doi.org/10.1093/nar/30.1.325
Letunic, I., & Bork, P. (2011). Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Research, 39(suppl), W475–W478. https://doi.org/10.1093/nar/gkr201
Liu, X., Liu, Z., Niu, X., Xu, Q., & Yang, L. (2019). Genome-Wide Identification and Analysis of the NPR1-Like Gene Family in Bread Wheat and Its Relatives. International Journal of Molecular Sciences, 20(23), 5974. https://doi.org/10.3390/ijms20235974
Mehan, M. R., Freimer, N. B., & Ophoff, R. A. (2004). A genome-wide survey of segmental duplications that mediate common human genetic variation of chromosomal architecture. Human Genomics, 1(5), 335. https://doi.org/10.1186/1479-7364-1-5-335
Munns, R., & Tester, M. (2008). Mechanisms of Salinity Tolerance. Annual Review of Plant Biology, 59(1), 651–681. https://doi.org/10.1146/annurev.arplant.59.032607.092911
Olate, E., Jiménez-Gómez, J. M., Holuigue, L., & Salinas, J. (2018). NPR1 mediates a novel regulatory pathway in cold acclimation by interacting with HSFA1 factors. Nature Plants, 4(10), 811–823. https://doi.org/10.1038/s41477-018-0254-2
Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., & Lopez, R. (2005). InterProScan: protein domains identifier. Nucleic Acids Research, 33(Suppl2), W116–W120. https://doi.org/10.1093/nar/gki442
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Steiner, H.-Y., & Hunt, M. D. (1996). Systemic Acquired Resistance. The Plant Cell, 8(10), 1809. https://doi.org/10.2307/3870231
Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., & Gepts, P. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008
Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
Shu, L.-J., Liao, J.-Y., Lin, N.-C., & Chung, C.-L. (2018). Identification of a strawberry NPR-like gene involved in negative regulation of the salicylic acid-mediated defense pathway. PLOS ONE, 13(10), e0205790. https://doi.org/10.1371/journal.pone.0205790
Siddiq, M., & Uebersax, M. A. (2022). Dry beans and pulses production, processing and nutrition. John Wiley & Sons. https://doi.org/10.1002/9781118448298
Sugano, S., Jiang, C.-J., Miyazawa, S.-I., Masumoto, C., Yazawa, K., Hayashi, N., Shimono, M., Nakayama, A., Miyao, M., & Takatsuji, H (2010). Role of OsNPR1 in rice defense program as revealed by genome-wide expression analysis. Plant Molecular Biology, 74(6), 549–562. https://doi.org/10.1007/s11103-010-9695-3
Suyama, M., Torrents, D., & Bork, P. (2006). PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Research, 34(Web Server), W609–W612. https://doi.org/10.1093/nar/gkl315
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28(10), 2731–2739. https://doi.org/10.1093/molbev/msr121
Thompson, J. (1997). The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25(24), 4876–4882. https://doi.org/10.1093/nar/25.24.4876
Trapnell, C., Roberts, A., Goff, L., Pertea, G., Kim, D., Kelley, D. R., Pimentel, H., Salzberg, S. L., Rinn, J. L., & Pachter, L. (2012). Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7(3), 562–578. https://doi.org/10.1038/nprot.2012.016
Valliyodan, B., Cannon, S. B., Bayer, P. E., Shu, S., Brown, A. V., Ren, L., Jenkins, J., Chung, C. Y. ‐L., Chan, T., Daum, C. G., Plott, C., Hastie, A., Baruch, K., Barry, K. W., Huang, W., Patil, G., Varshney, R. K., Hu, H., Batley, J., & Yuan, Y. (2019). Construction and comparison of three reference‐quality genome assemblies for soybean. The Plant Journal, 100(5), 1066–1082. https://doi.org/10.1111/tpj.14500
Voorrips, R. E. (2002). MapChart: Software for the Graphical Presentation of Linkage Maps and QTLs. Journal of Heredity, 93(1), 77–78. https://doi.org/10.1093/jhered/93.1.7
Wang, P., Zhao, Z., Zhang, Z., Cai, Z., Liao, J., Tan, Q., Xiang, M., Chang, L., Xu, D., Tian, Q., & Wang, D. (2021). Genome-wide identification and analysis of NPR family genes in Brassica juncea var. tumida. Gene, 769, 145210. https://doi.org/10.1016/j.gene.2020.145210
Wei, Y., Zhao, S., Liu, N., & Zhang, Y. (2021). Genome-wide identification, evolution, and expression analysis of the NPR1-like gene family in pears. PeerJ, 9, e12617. https://doi.org/10.7717/peerj.12617
Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V., & Després, C. (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports, 1(6), 639–647. https://doi.org/10.1016/j.celrep.2012.05.008
Xiang, C., Miao, Z.-H., & Lam, E. (1996). Coordinated activation of as-1-type elements and a tobacco glutathione S-transferase gene by auxins, salicylic acid, methyl-jasmonate and hydrogen peroxide. Plant Molecular Biology, 32(3), 415–426. https://doi.org/10.1007/bf00019093
Yang, Z. (2007). PAML 4: Phylogenetic Analysis by Maximum Likelihood. Molecular Biology and Evolution, 24(8), 1586–1591. https://doi.org/10.1093/molbev/msm088
Zhang, J., Jiao, P., Zhang, C., Tong, X., Wei, Q., & Xu, L. (2016). Apple NPR1 homologs and their alternative splicing forms may contribute to SA and disease responses. Tree Genetics & Genomes, 12(5). https://doi.org/10.1007/s11295-016-1050-7
Zhou, J.-M., Trifa, Y., Silva, H., Pontier, D., Lam, E., Shah, J., & Klessig, D. F. (2000). NPR1 Differentially Interacts with Members of the TGA/OBF Family of Transcription Factors That Bind an Element of the PR-1 Gene Required for Induction by Salicylic Acid. Molecular Plant-Microbe Interactions, 13(2), 191–202. https://doi.org/10.1094/mpmi.2000.13.2.191
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Natural Products and Biotechnology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.