Embryogenic Callus Differentiation in Short-Term Callus Derived from Leaf Explants of Alfalfa Cultivars



Alfalfa,, Cultivars,, In vitro culture, Embryogenic callus


Alfalfa is a forage crop that accounts for one of the best sources of protein and is commonly grown all over the world. In vitro callus and embryogenic induction of alfalfa have been investigated previously; however, most of the investigations were almost limited with callus formation. In this study, leaves of 5 Medicago sativa L. cultivars (Alsancak, Sazova, Plato Iside, and Bilensoy) have been used. Influences of culture medium contents and hormones applications on callus and embryogenic callus induction were determined to optimize in vitro culture mediums of alfalfa (0.0125 g kinetin 2,4 D 1 mg mL-1; 1 g kinetin 2,4 D 1 mg mL-1 ; 0.25 g kinetin 2,4 D 2 mg mL-1; 0.5 g kinetin 2,4 D 2 mg mL-1). Callus formation was detected at a rate of 74% in 5 different cultivars used in the experiment. The five alfalfa cultivars were classified into four categories in terms of embryogenic differentiation capacity. The tested alfalfa cultivars varied in their callus formation and embryogenic callus differentiation. Sazova, Alsancak, and Bilensoy were detected for better callus formation; similarly, the same cultivars responded with better embryogenic callus formation in the culture mediums including various hormone concentrations. The present study shows that our methods have beneficial impacts on the somatic embryo induced by alfalfa. However, it depends strongly on genotype, hormone concentrations and the other medium components.


Bezirganoglu, I. (2017). Tissue Culture of Cucumis melo. Agri. Res. Tech: Open Acess J., 6, 1-2. https://doi.org/10.19080/ARTOAJ.2017.06.555682

Basigalup, D., Irwin, J., Mi, F., & Abdelguerfi-Laouar, M. (2014). Perspectives of alfalfa in Australia, China, Africa and Latin America. Legume Perspectives, 4, 9-10.

Brown, A. H. D. (1988). The genetic diversity of germplasm collections. In: Fraleigh B (ed) Proceedings of a Workshop on the Genetic Evaluation of Plant Genetic Resources, Toronto, Canada (pp 9– 11). Research Branch, Agriculture Canada, Toronto.

Choudhary, S. K., Singh, R. N., Upadhyay, P. K., Singh, R. K., Choudhary, H. R., & Pal, V. (2014). Effect of Vegetable Intercrops and Planting Pattern of Maize on Growth, Yield and Economics of Winter Maize (Zea mays L.) in Eastern Uttar Pradesh. Environment & Ecology, 32(1), 101-105.

Dos Santos, A. V. P., Cutter, E. G., Davey, M. R. (1983). Origin and development of somatic embryos in Medicago sativa L. (alfalfa). Protoplasma, 117, 107-115.

Fehér, A. (2015). Somatic Embryogenesis stress induced remodeling of plant cell. Biochimica et Biophysica Acta (BBA), 1849, 385-402. https://doi.org/10.1016/j.bbagrm.2014.07.005

Fujii, J. A. A., Slade, D., Olsen, R., Ruzin, S. E., & Redenbaugh, K. (1990). Alfalfa somatic embryo maturation and conversion to plants. Plant Sci., 72, 93–100.

Heuzé V., Tran G., Boval M., Noblet J., Renaudeau D., Lessire M., & Lebas F., (2016). Alfalfa (Medicago sativa). Feedipedia, a programme by INRAE, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/275

Kumar, S., Tiwari, R., Chandra, A., Sharma, A., & Bhatnagar, R. K. (2012). In vitro direct plant regeneration and Agrobacterium-mediated transformation of lucerne (Medicago sativa L.). Grass Forage Sci, 68, 459-468.

Liu, W., Liang, Z., Shan, C., Marsolais, F., & Tian, L. (2013). Genetic transformation and full recovery of alfalfa plants via secondary somatic embryogenesis. In Vitro Cell Dev-Pl, 49, 17-23.

Nikolic, N., Butler, J. R. A., Bagliniere, J. L., Laughton, R., Mcmyn, I. A. G., & Chevalat, C. (2010). An examination of genetic diversity and effective population size in Atlantic salmon populations. Genetics Research, 91(6), 395-412.

Nofouzi, F., Oğuz, M. C., Khabbazı, S. D., & Ergul, A. (2019). Improvement of the in vitro regeneration and Agrobacterium-mediated genetic transformation of Medicago sativa L. Turkish Journal of Agriculture and Forestry, 43(1), 96-104.


Samac, D. A. & Austin-Phillips, S. (2006). Alfalfa (Medicago sativa L.). Methods Mol Biol., 343, 301-11.

Sangra, A., Shahin, L., & Dhir, S. K. (2019). Optimization of Isolation and Culture of Protoplasts in Alfalfa (Medicago sativa) Cultivar Regen-SY. American Journal of Plant Sciences, 10, 1206-1219.

Varga, P., & Badea, E. M. (1992). In vitro plant regeneration methods in alfalfa breeding. Euphytica, 59, 119–123.

Yazıcılar, B., Böke, F., Alaylı, A., Nadaroğlu, H., Gedikli, S., & Bezirganoglu, I. (2021). In vitro effects of CaO nanoparticles on Triticale callus exposed to short and long-term salt stress. Plant Cell Rep., 40(1), 29-42.

Zhang, H., Huang, Q., & Su, J. (2010). Development of Alfalfa (Medicago sativa L.) Regeneration System and Agrobacterium-Mediated Genetic Transformation Agricultural Sciences in China, 9(2), 170-178. https://doi.org/10.1016/S1671-2927(09)60081-X




How to Cite

Yazicilar, B., & Ling Chang, Y. (2022). Embryogenic Callus Differentiation in Short-Term Callus Derived from Leaf Explants of Alfalfa Cultivars. Natural Products and Biotechnology, 2(2), 99–104. Retrieved from https://natprobiotech.com/index.php/natprobiotech/article/view/29



Research Article

Most read articles by the same author(s)