Biological Evaluation of Azide Derivative as Antibacterial and Anticancer Agents

Authors

Keywords:

Azide, MRSA, Acinetobacter baumannii, Candida albicans, Candida parapsilosis

Abstract

Azides are significant compounds because of their biological effects on bacteria, viruses, fungi, and cancer. The antibacterial and anticancer properties of azide derivatives have been demonstrated in several microbial strains and cancer cell lines. The most significant microorganisms in command of hospital-acquired nosocomial infections include Acinetobacter baumannii (A. baumannii), Methicillin-resistant Staphylococcus aureus (MRSA), Candida albicans (C. albicans), and Candida dubliniensis (C. dubliniensis). These infections have become resistant to a variety of antibiotics. These resistant infections are frequently seen in cancer patients. Novel drug-active compounds are thus required that have both antibacterial and anticancer activity. This study examined previously synthesized 1-azido-5,6,7-trimethoxy-2,3-dihydro-1H-indene (4) for its antibacterial and anticancer activities. Antimicrobial activity was assessed using the disc diffusion technique, and minimum inhibitory concentration values were computed for zone formation in the examined pathogens. The study's findings indicate that while azide derivatives did not exhibit any effect against other pathogens, they suppressed bacterial growth with a zone diameter of 10 mm against A. baumannii. The MIC values of azide derivative against A. baumannii were 3.90 µg/ml. WST-8 analysis in Caco-2 cancer and healthy fibroblast cell line was used to determine the anticancer study. As a result of this analysis, the IC50 value was calculated to be 2.99 µM. There is little anticancer activity. A very low toxic effect of the azide compound on fibroblast cells was also observed. These findings suggest that this azide derivative may be tested as a potential antibacterial and anticancer agent.

References

Abdullahi, I. N., Fernandez-Fernandez, R., Juarez-Fernandez, G., Martinez-Alvarez, S., Eguizabal, P., Zarazaga, M., & Torres, C. (2021). Wild Animals Are Reservoirs and Sentinels of Staphylococcus aureus and MRSA Clones: A Problem with "One Health" Concern. Antibiotics-Basel, 10(12), 1556. https://doi.org/10.3390/antibiotics10121556

Araújo, A. R. L., Tomé, A. C., Santos, C. I. M., Faustino, M. A. F., Neves, M., Simões, M. M. Q., Moura, N. M. M., Abu-Orabi, S. T. & Cavaleiro, J. A. S. (2020). Azides and Porphyrinoids: Synthetic Approaches and Applications. Part 1-Azides, Porphyrins and Corroles. Molecules, 25(7). https://doi.org/10.3390/molecules25071662

Cooper, D. L., & Lovett, S. T. (2011). Toxicity and tolerance mechanisms for azidothymidine, a replication gap-promoting agent, in Escherichia coli. DNA Repair (Amst), 10(3), 260-270. https://doi.org/10.1016/j.dnarep.2010.11.007

El Rayes, S. M. (2010). Convenient Synthesis and Antimicrobial Activity of Some Novel Amino Acid Coupled Triazoles. Molecules, 15(10). https://doi.org/10.3390/molecules15106759

El-Kardocy, A., Mustafa, M., Ahmed, E., Mohamady, S., & Mostafa, Y. (2019). Aryl azide-sulfonamide hybrids induce cellular apoptosis: synthesis and preliminary screening of their cytotoxicity in human HCT116 and A549 cancer cell lines. Medicinal Chemistry Research, 28. https://doi.org/10.1007/s00044-019-02438-x

Fu, D. J., Fu, L., Liu, Y. C., Wang, J. W., Wang, Y. Q., Han, B. K., Li, X. R., Zhang, C., Li, F., Song, J., Zhao, B., Mao, R. W., Zhao, R. H., Zhang, S. Y., Zhang, L., Zhang, Y. B., & Liu, H. M. (2017). Structure-Activity Relationship Studies of beta-Lactam-azide Analogues as Orally Active Antitumor Agents Targeting the Tubulin Colchicine Site. Scientific Reports, 7, 12788. https://doi.org/10.1038/s41598-017-12912-4

Gedefie, A., Demsis, W., Ashagrie, M., Kassa, Y., Tesfaye, M., Tilahun, M., Bisetegn, H., & Sahle, Z. (2021). Acinetobacter baumannii Biofilm Formation and Its Role in Disease Pathogenesis: A Review. Infection and Drug Resistance, 14, 3711-3719. https://doi.org/10.2147/idr.s332051

González-Calderón, D., Mejía-Dionicio, M. G., Morales-Reza, M. A., Aguirre-de Paz, J. G., Ramírez-Villalva, A., Morales-Rodríguez, M., Fuentes-Benites, A., & González-Romero, C. (2016). Antifungal activity of 1′-homo-N-1,2,3-triazol-bicyclic carbonucleosides: A novel type of compound afforded by azide-enolate (3+2) cycloaddition. Bioorganic Chemistry, 69, 1-6. https://doi.org/10.1016/j.bioorg.2016.09.003

Herrera-Hidalgo, L., Gil-Navarro, M. V., Dilly Penchala, S., López-Cortes, L. E., de Alarcón, A., Luque-Márquez, R., Lopez-Cortes, L. F., & Gutiérrez-Valencia, A. (2020). Ceftriaxone pharmacokinetics by a sensitive and simple LC–MS/MS method: Development and application. Journal of Pharmaceutical and Biomedical Analysis, 189, 113484. https://doi.org/https://doi.org/10.1016/j.jpba.2020.113484

Kabra, N., Li, Z., Chen, L., Li, B., Zhang, X., Wang, C., Yeatman, T., Coppola, D., & Chen, J. (2009). SirT1 Is an Inhibitor of Proliferation and Tumor Formation in Colon Cancer. Journal of Biological Chemistry, 284(27), 18210-18217. https://doi.org/10.1074/jbc.M109.000034

Kaci, F. N., Rüzgar, D., Görmez, A., & Efe, D. (2022). The Evaluation of Cytotoxic and Antibacterial Activity of the Ethanol Extract of Punica granatum L. Peels. Journal of the Institute of Science and Technology, 11(3), 2319-2327.

Kalelkar, P. P., Geng, Z., Finn, M. G., & Collard, D. M. (2019). Azide-Substituted Polylactide: A Biodegradable Substrate for Antimicrobial Materials via Click Chemistry Attachment of Quaternary Ammonium Groups. Biomacromolecules, 20(9), 3366-3374. https://doi.org/10.1021/acs.biomac.9b00504

Karimov, R. R., Sharma, A., & Hartwig, J. F. (2016). Late Stage Azidation of Complex Molecules. ACS Central Science, 2(10), 715-724. https://doi.org/10.1021/acscentsci.6b00214

Kotra, L. P., Manouilov, K. K., Cretton-Scott, E., Sommadossi, J.-P., Boudinot, F. D., Schinazi, R. F., & Chu, C. K. (1996). Synthesis, Biotransformation, and Pharmacokinetic Studies of 9-(β-d-Arabinofuranosyl)-6-azidopurine: A Prodrug for Ara-A Designed to Utilize the Azide Reduction Pathway. Journal of Medicinal Chemistry, 39(26), 5202-5207. https://doi.org/10.1021/jm960339p

Kriegeskorte, A., Ballhausen, B., Idelevich, E., Köck, R., Friedrich, A., Karch, H., Peters, G., & Becker, K. (2012). Human MRSA Isolates with Novel Genetic Homolog, Germany. Emerging Infectious Disease journal, 18(6), 1016. https://doi.org/10.3201/eid1806.110910

Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 10(3), 373. https://doi.org/10.3390/pathogens10030373

Lea, T. (2015). Caco-2 Cell Line. In K. Verhoeckx, P. Cotter, I. López-Expósito, C. Kleiveland, T. Lea, A. Mackie, T. Requena, D. Swiatecka, & H. Wichers (Eds.), The Impact of Food Bioactives on Health: in vitro and ex vivo models (pp. 103-111). Springer International Publishing. https://doi.org/10.1007/978-3-319-16104-4_10

Lopes, J. P., & Lionakis, M. S. (2022). Pathogenesis and virulence of Candida albicans. Virulence, 13(1), 89-121. https://doi.org/10.1080/21505594.2021.2019950

Nicolaus, N., Zapke, J., Riesterer, P., Neudörfl, J. M., Prokop, A., Oschkinat, H., & Schmalz, H. G. (2010). Azides derived from colchicine and their use in library synthesis: A practical entry to new bioactive derivatives of an old natural drug. Chem Med Chem, 5(5), 661-665. https://doi.org/10.1002/cmdc.201000063

Obafemi, C. A., & Akinpelu, D. A. (2005). Synthesis and antimicrobial activity of some 2(1H)-quinoxalinone-6-sulfonyl derivatives. Phosphorus Sulfur and Silicon and the Related Elements, 180(8), 1795-1807. https://doi.org/10.1080/104265090889396

Ozgeris, B. (2021). Synthesis of Substituted Phenethylamine-Based Thioureas and Their Antimicrobial and Antioxidant Properties. Russian Journal of Organic Chemistry, 57(3), 422-429. https://doi.org/10.1134/s1070428021030143

Ozgeris, B., Aksu, K., Tumer, F., & Goksu, S. (2015). Synthesis of dopamine, rotigotin, ladostigil, rasagiline analogues 2-amino-4,5,6-trimethoxyindane, 1-amino-5,6,7-trimethoxyindane, and their sulfamide derivatives. Synthetic Communications, 45(1), 78-85. https://doi.org/10.1080/00397911.2014.957321

Özgeriş, F., Yıldırım, M., Görmez, A., & Ozgeris, B. (2021). A Novel Nicotinoyl Thiourea Manganese Complex: Synthesis, Characterization, and Biological Activity Studies. International Journal of Chemistry and Technology. https://doi.org/10.32571/ijct.940169

Phetsang, W., Blaskovich, M. A. T., Butler, M. S., Huang, J. X., Zuegg, J., Mamidyala, S. K., Ramu, S., Kavanagh, A. M., & Cooper, M. A. (2014). An azido-oxazolidinone antibiotic for live bacterial cell imaging and generation of antibiotic variants. Bioorganic & Medicinal Chemistry, 22(16), 4490-4498. https://doi.org/10.1016/j.bmc.2014.05.054

Pompilio, A., Scribano, D., Sarshar, M., Di Bonaventura, G., Palamara, A. T., & Ambrosi, C. (2021). Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms, 9(7), 1353. https://doi.org/10.3390/microorganisms9071353

Sarwar, A., Katas, H., Samsudin, S. N., & Zin, N. M. (2015). Regioselective Sequential Modification of Chitosan via Azide-Alkyne Click Reaction: Synthesis, Characterization, and Antimicrobial Activity of Chitosan Derivatives and Nanoparticles. PLOS ONE, 10(4), e0123084. https://doi.org/10.1371/journal.pone.0123084

Sharma, G., Kandikonda, S., Buddana, S., venkata Reddy, S., reddy shetty, P., & Hügel, H. (2014). ZrCl4-Catalyzed C-O Bond to C-N Bond Formation: Synthesis of 1,2,3-Triazoles and Their Biological Evaluation. Synthetic Communications, 44. https://doi.org/10.1080/00397911.2014.910528

Sullivan, D., & Coleman, D. (1998). Candida dubliniensis: Characteristics and Identification. Journal of Clinical Microbiology, 36(2), 329-334. https://doi.org/10.1128/JCM.36.2.329-334.1998

Tanabe, K., Ishizaki, J., Ando, Y., Ito, T., & Nishimoto, S. (2012). Reductive activation of 5-fluorodeoxyuridine prodrug possessing azide methyl group by hypoxic X-irradiation. Bioorg Med Chem Lett, 22(4), 1682-1685. https://doi.org/10.1016/j.bmcl.2011.12.106

Thamilarasan, V., Jayamani, A., & Sengottuvelan, N. (2015). Synthesis, molecular structure, biological properties and molecular docking studies on Mn(II), Co(II) and Zn(II) complexes containing bipyridine-azide ligands. Eur J Med Chem, 89, 266-278. https://doi.org/10.1016/j.ejmech.2014.09.073

Tishchenko, Е. А., & Myznikov, L. V. (2022). Synthesis of Carbamoyl Azides and 1-Substituted Tetrazol-5-ones from Isocyanates and NaN3 in the Presence of ZnCl2. Russian Journal of General Chemistry, 92(5), 801-805. https://doi.org/10.1134/S1070363222050085

Wei, R., Yang, X., Liu, H., Wei, T., Chen, S., & Li, X. (2021). Synthetic pseudaminic-acid-based antibacterial vaccine confers effective protection against Acinetobacter baumannii infection. ACS central science, 7(9), 1535-1542.

Downloads

Published

2022-12-15

How to Cite

Yildirim, M., Aksakal, E., Ozgeris, F. B., Ozgeris, B., & Gormez, A. (2022). Biological Evaluation of Azide Derivative as Antibacterial and Anticancer Agents. Natural Products and Biotechnology, 2(2), 105–113. Retrieved from https://natprobiotech.com/index.php/natprobiotech/article/view/34

Issue

Section

Research Article