Secondary Metabolites in Fungi

Authors

Keywords:

fungi

Abstract

Fungi are a biological family that includes multicellular and unicellular eukaryotic organisms in general. They are quite numerous and diverse. It is the second largest group of organisms on Earth after insects. Higher fungi (terrestrial fungi) currently constitute a large and efficiently untapped resource of new pharmacological crops with nutritional values are potentially powerful. Antioxidants prevent cellular damage caused by free radicals in living beings. It has been found that 36% of endophytic mushroom extracts with a high phenolic content show strong antioxidant effects. In one study, they reported that the antioxidant activities of the strains Aspergillus sp., A. niger, A. peyronelii and Chaetomium sp. ranged from 50% to 80% and that this antioxidant activity was due to their high phenolic content. In addition to the antioxidant properties of fungi, it has been shown as a result of research that they show antibacterial activity. Macrofungal β-glucans (β-1,6 glycosidic bonds and mainly β-1,3), which are known to have immunomodulatory and antitumor effects in cancer prevention, can be used in treatment strategies. At the same time, it has been shown in studies that these metabolites obtained from fungi cause fewer side effects when used in treatments, unlike chemical drugs. As a result of phytochemical research, the presence of flavonoids, anthraquinones, steroids, terpenoids, coumarins, phenols and tannins in fungal extracts in general was detected, while alkaloids and saponins were not found. It has been determined that the studies on mushrooms have gained versatile uses since they reveal secondary metabolite components with different biological activities in the structure of these group members.

References

Abdullah, N., Ismail, S. M., Aminudin, N., Shuib, A. S., & Lau, B. F. (2012). Evaluation of selected culinary-medicinal mushrooms for antioxidant and ACE inhibitory activities. Evidence-Based Complementary and Alternative Medicine, 2012. https://doi.org/10.1155/2012/464238

Abutaha, N., Mashaly, A., Al-Mekhlafi, F. A., Farooq, M., Al-shami, M., & Wadaan, M. A. (2015). Larvicidal activity of endophytic fungal extract of Cochliobolus spicifer (Pleosporales: Pleosporaceae) on Aedes caspius and Culex pipiens (Diptera: Culicidae). Applied entomology and zoology, 50(3), 405-414. https://doi.org/10.1007/s13355-015-0347-6

Akyuz, M., Onganer, A. N., Erecevit, P., & Kirbag, S. (2010). Antimicrobial activity of some edible mushrooms in the eastern and southeast Anatolia region of Turkey. Gazi University Journal of Science, 23, 2, 125-130.

Al-Faqeeh, L. A. S., Naser, R., SR., K., & Khan, S. W. (2019). TLC and FTIR analyses of Hypsizygus ulmarius (Bull.) fruiting bodies. International Journal of Pharmacy and Pharmaceutical Research, 17, 61-71.

Arora, D. S., & Chandra, P. (2011). In vitro antioxidant potential of some soil fungi: screening of functional compounds and their purification from Penicillium citrinum. Applied biochemistry and biotechnology, 165(2), 639-651. https://doi.org/10.1007/s12010-011-9282-3

Balaji, P., Madhanraj, R., Rameshkumar, K., Veeramanikandan, V., Eyini, M., Arun, A., Thulasinathan, B., Farraj, D. A. A., Elshikh, M. S., Alokda, A. M., Mahmoud, A. H., Tack, J. C., &

Kim, H. J. (2020). Evaluation of antidiabetic activity of Pleurotus pulmonarius against streptozotocin-nicotinamide induced diabetic wistar albino rats. Saudi Journal of Biological Sciences, 27(3), 913-924. https://doi.org/10.1016/j.sjbs.2020.01.027

Balakrishnan, P., & Loganayagi, C. T. (2018). Antihyperglycemic activity of Agaricus bisporus mushroom extracts on alloxan induced diabetic rats. International Journal of Pharma Research and Health Science, 6(2), 2475-2479. https://doi.org/10.21276/ijprhs.2018. 2018. 02.24

Barros, L., Calhelha, R. C., Vaz, J. A., Ferreira, I. C. F. R., Baptista, P., & Estevinho, L. M. (2007). Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 225(2), 151-156. https://doi.org/10.1007/s00217-006-0394-x

Baskar, K., Chinnasamy, R., Pandy, K., Venkatesan, M., Sebastian, P. J., Subban, M., Thomas, A., Kweka, E. J., & Devarajan, N. (2020). Larvicidal and histopathology effect of endophytic fungal extracts of Aspergillus tamarii against Aedes aegypti and Culex quinquefasciatus. Heliyon, 6(10), e05331. https://doi.org/10.1016/j.heliyon.2020.e05331

Bharathidasan, R., & Panneerselvam, A. (2012). Antioxidant Activity of The Endophytic Fungi Isolated from Mangrove Environment of Karankadu, Ramanathapuram District. Int J Pharm Sci Res., 3(8), 2866-2869. http://dx.doi.org/10.13040/IJPSR.0975-8232.3(8).2866-69

Botterweck, A. A., Verhagen, H., Goldbohm, R. A., Kleinjans, J., & van den Brandt, P. A. (2000). Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: results from analyses in the Netherlands cohort study. Food and Chemical Toxicology, 38(7), 599-605. https://doi.org/10.1016/s0278-6915(00)00042-9

Bücker, A., Bücker, N. C. F., Souza, A. Q. L., Gama, A. M. D., Rodrigues-Filho, E., Costa, F. M., Nunez, C. V., Silva, A. C., & Tadei, W. P. (2013). Larvicidal effects of endophytic and basidiomycete fungus extracts on Aedes and Anopheles larvae (Diptera, Culicidae). Revista da Sociedade Brasileira de Medicina Tropical., 46, 411-419. https://doi.org/10.1590/0037-8682-0063-2013

Casaril, K. B. P. B., Kasuya, M. C. M., & Vanetti, M. C. D. (2011). Antimicrobial activity and mineral composition of shiitake mushrooms cultivated on agricultural waste. Brazilian Archives of Biology and Technology, 54(5), 991-1002. https://doi.org/10.1590/S1516-89132011000500017

Chandra, P., & Arora, D. S. (2009). Antioxidant activity of fungi isolated from soil of different areas of Punjab, India. Journal of Applied and Natural Science, 1(2), 123-128. https://doi.org/10.31018/jans.v1i2.49

Cheng, J. J., Chao, C. H., Chang, P. C., & Lu, M. K. (2016). Studies on anti-inflammatory activity of sulfated polysaccharides from cultivated fungi Antrodia cinnamomea. Food Hydrocolloids, 53, 37-45. https://doi.org/10.1016/j.foodhyd.2014.09.035

Chen, H. P., & Liu, J. K. (2017). Secondary metabolites from higher fungi. Progress in the Chemistry of Organic Natural Products 106, 1-201. https://doi.org/10.1007/978-3-319-59542-9_1

Chen, S., Ding, M., Liu, W., Huang, X., Liu, Z., Lu, Y., Liu, H., & She, Z. (2018). Anti-inflammatory meroterpenoids from the mangrove endophytic fungus Talaromyces amestolkiae YX1. Phytochemistry, 146, 8-15. https://doi.org/10.1016/j.phytochem.2017.11.011

Chowdhury, M. M. H., Kubra, K., Ahmed, S. R. (2015). Screening of antimicrobial, antioxidant properties and bioactive compounds of some edible mushrooms cultivated in Bangladesh. Annals of Clinical Microbiology and Antimicrobials, 14(1), 8. https://doi.org/10.1186%2Fs12941-015-0067-3

Çöl, B., Balcı, E., Güneş, H., & Allı, H. (2017). Mycelium Growth, Molecular Identification and Investigation of Antitumor Effects Schizophyllum commune Fr. Süleyman Demirel University Journal of Natural and Applied Sciences, 21(2) 586-591. https://doi.org/10.19113/sdufbed.97992

Danagoudar, A., Joshi, C. G., Ravi, S. K., Kumar, H. G. R., & Ramesh, B. N. (2018). Antioxidant and cytotoxic potential of endophytic fungi isolated from medicinal plant Tragia involucrata L. Pharmacognosy Research, 10(2), 188-194. http://dx.doi.org/10.4103/pr.pr_137_17

Devi, N. N., Prabakaran, J. J., & Wahab, F. (2012). Phytochemical analysis and enzyme analysis of endophytic fungi from Centella asiatica. Asian Pacific Journal of Tropical Biomedicine, 2(3), 1280-1284. https://doi.org/10.1016/S2221-1691(12)60400-6

Dong, Y., Jing, T., Meng, Q., Liu, C., Hu, S., Ma, Y., Liu, Y., Lu, J., Cheng, Y., Wang, D., & Teng, L. (2014). Studies on the antidiabetic activities of Cordyceps militaris extract in diet-streptozotocin-induced diabetic Sprague-Dawley rats. BioMed research international, 2014, 160980. https://doi.org/10.1155%2F2014%2F160980

Duman, R., Doğan, H. H., & Ateş, A. (2003). Antimicrobial Activities of The Macrofungi of Morchella conica (Pers.) Boudier and Suillus luteus (L.) S. F. Gray. Selcuk University Journal of Science Faculty, 22, 19-24.

Erdoğan, S., Soylu, M. K., & Başer, K. H. C. (2017). Bazı yabani mantarların antioksidan özellikleri. Nevsehir Journal of Science and Technology, 6, 254-260. http://dx.doi.org/10.17100/nevbiltek.334595

Finimundy, T. C., Scola, G., Scariot, F. J., Dillon, A. J., Moura, S., Echeverrigaray, S., henriques, j. P. & RoeschEly, M. (2018). Extrinsic and intrinsic apoptotic responses induced by shiitake culinarymedicinal mushroom Lentinus edodes (Agaricomycetes) aqueous extract against a larynx carcinoma cell line. International Journal of Medicinal Mushrooms, 20(1), 31-46. https://doi.org/10.1615/intjmedmushrooms.2018025400

Getha, K., Hatsu, M., Wong, H. J., & Lee, S. S. (2009). Submerged cultivation of basidiomycete fungi associated with root diseases for production of valuable bioactive metabolites. Journal of Tropical Forest Science, 21(1), 1-7.

Heleno, S. A., Barros, L., Martins, A., Morales, P., Fernandez-Ruiz, V., Glamoclija, J., Sokovic, M., & Ferreira, I. C. F. R. (2015). Nutritional value, bioactive compounds, antimicrobial activity and bioaccessibility studies with wild edible mushrooms. LWT-Food Science and Technology, 63(2), 799-806. https://doi.org/10.1016/j.lwt.2015.04.028

Huang, W. Y., Cai, Y. Z., Xing, J., Corke, H., & Sun, M. (2007). A potential antioxidant resource: endophytic fungi from medicinal plants. Economic botany, 61(1), 14-30. http://dx.doi.org/10.1663/0013-0001(2007)61%5B14:APAREF%5D2.0.CO;2

Huang, H. Y., Chieh, S. Y., Tso, T. K., Chien, T. Y., Lin, H. T., & Tsai, Y. C. (2011). Orally administered mycelial culture of Phellinus linteus exhibits antitumor effects in hepatoma cell-bearing mice. Journal of Ethnopharmacology, 133(2), 460-466. https://doi.org/10.1016/j.jep.2010.10.015

Huo, X., Liu, C., Bai, X., Li, W., Li, J., Hu, X., & Cao, L. (2017). Aqueous extract of Cordyceps sinensis potentiates the antitumor effect of DDP and attenuates therapy-associated toxicity in non-small cell lung cancer via IκBα/NFκB and AKT/MMP2/MMP9 pathways. RSC Advances, 7(60), 37743-37754. https://doi.org/10.1039/C7RA04716A

Hussein, A. R., Ali, E. M., & Hamid, E. (2018). Antibacterial activity of alcoholic and aqueous extracts of Agaricus bisporus against food borne bacterial pathogens. Journal of Al-Nahrain University, 21(1), 111-114.

İnci, Ş., Kadıoğlu Dalkılıç, L., Dalkılıç, S., & Kırbağ, S. (2019). Antimicrobial and antioxidant effect of Helvella leucomelaena (Pers.) Nannf. Artvin Coruh University Journal of Forestry Faculty, 20(2), 249-253. https://doi.org/10.17474/artvinofd.601528

Jin, Y., Meng, X., Qiu, Z., Su, Y., Yu, P., Qu, P. (2018). Anti-tumor and anti-metastatic roles of cordycepin, one bioactive compound of Cordyceps militaris. Saudi Journal of Biological Sciences, 25(5), 991-995. https://doi.org/10.1016%2Fj.sjbs.2018.05.016

Kaur, A., Kaur, R., & Kaur, A. (2018). Evaluation of antidiabetic and antioxidant potential of endophytic fungi isolated from medicinal plants. International Journal of Green Pharmacy, 12(1), 6-14.

Khan, R., Naqvi, S. T. Q., Fatima, N., & Muhammad, S. A. (2019). 30. Study of antidiabetic activities of endophytic fungi isolated from plants. Pure and Applied Biology, 8(2), 1287-1295. http://dx.doi.org/10.19045/bspab.2019.80071

Khatun, S., Islam, A., Guler, P., Cakilcioglu, U., & Chatterjee, N. C. (2013). Hypoglycemic activity of a dietary mushroom Pleurotus florida on alloxan induced diabetic rats. Biological Diversity Conservation, 6(2), 91-96.

Khayat, M. T., Ibrahim, S. R., Mohamed, G. A., & Abdallah, H. M. (2019). Anti-inflammatory metabolites from endophytic fungus Fusarium sp. Phytochemistry Letters, 29, 104-109. https://doi.org/10.1016/j.phytol.2018.11.024

Khiralla, A., Mohamed, I., Thomas, J., Mignard, B., Spina, R., Yagi, S., & Laurain-Mattar, D. (2015). A pilot study of antioxidantpotential of endophytic fungi from some Sudanese medicinal plants. Asian Pacific Journal of Tropical Medicine, 8(9), 701-704. https://doi.org/10.1016/j.apjtm.2015.07.032

Kim, H. M., Kang, J. S., Kim, J. Y., Park, S. K., Kim, H. S., Lee, Y. J., Yun, J., Hong, J. T., Kim, Y., & Han, S. B. (2010). Evaluation of antidiabetic activity of polysaccharide isolated from Phellinus linteus in nonobese diabetic mouse. International Immunopharmacology, 10(1), 72-78 https://doi.org/10.1016/j.intimp.2009.09.024

Kim, K. S., Cui, X., Lee, D. S., Sohn, J. H., Yim, J. H., Kim, Y. C., & Oh, H. (2013). Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK pathways in lipopolysaccharide-stimulated RAW264.7 macrophages. Molecules, 18(11), 13245-13259. https://doi.org/10.3390/molecules181113245

Kosanić, M., Ranković, B., & Dašić, M. (2012). Mushrooms as possible antioxidant and antimicrobial agents. Iranian Journal of Pharmaceutical Research, 11(4), 1095-1102.

Kosanic, M., Rankovic, B., & Dasic, M. (2013). Antioxidant and antimicrobial properties of mushrooms. Bulgarian Journal of Agricultural Science, 19(5), 1040-1046.

Kosanić, M., Ranković, B., Rančić, A., Stanojković, T. (2016). Evaluation of metal concentration and antioxidant, antimicrobial, and anticancer potentials of two edible mushrooms Lactarius deliciosus and Macrolepiota procera. Journal of Food and Drug Analysis, 24(3), 477-484. https://doi.org/10.1016/j.jfda.2016.01.008

Kozarski, M., Klaus, A., Niksic, M., Jakovljevic, D., Helsper, J. P. F. G., & Van Griensven, L. J. L. D. (2011). Antioxidative and immunomodulating activities of polysaccharide extracts of the medicinal mushrooms Agaricus bisporus, Agaricus brasiliensis, Ganoderma lucidum and Phellinus linteus. Food chemistry, 129(4), 1667-1675. https://doi.org/10.1016/j.foodchem.2011.06.029

Kumar, P. M. R., Kumar, M. S., Manivel, A., & Mohan, S. C. (2018). Structural Characterization and Anti-Diabetic Activity of Polysaccharides from Agaricus bisporus Mushroom. Research Journal of Phytochemistry, 12(1), 14-20.

Ladoh-Yemeda, C. F., Nyegue, M. A., Ngene, J. P., Benelesse, G. E., Lenta, B., Wansi, J. D., Mpondo, M. E., & Dibong, S. D. (2015). Identification and phytochemical screening of endophytic fungi from stems of Phragmanthera capitata (Sprengel) S. Balle (Loranthaceae). Journal of Applied Biosciences, 90(1), 8355-8360. http://dx.doi.org/10.4314/jab.v90i1.7

Lee, D. S., Jang, J. H., Ko, W., Kim, K. S., Sohn, J. H., Kang, M. S., Ann, J. S., Kim, Y. C., & Oh, H. (2013a). PTP1B inhibitory and anti-inflammatory effects of secondary metabolites isolated from the marine-derived fungus Penicillium sp. JF-55. Marine Drugs, 11(4), 1409-1426. https://doi.org/10.3390%2Fmd11041409

Lee, J., Hong, J. H., Kim, J. D., Ahn, B. J., Kim, B. S., Kim, G. H., & Kim, J. J. (2013b). The antioxidant properties of solid-culture extracts of basidiomycetous fungi. The Journal of General and Applied Microbiology, 59(4), 279-285. https://doi.org/10.2323/jgam.59.279

Liao, G., Wu, P., Xue, J., Liu, L., Li, H., & Wei, X. (2018). Asperimides A–D, anti-inflammatory aromatic butenolides from a tropical endophytic fungus Aspergillus terreus. Fitoterapia, 131, 50-54. https://doi.org/10.1016/j.fitote.2018.10.011

Liu, Z., Liu, H., Chen, Y., & She, Z. (2018). A new anti-inflammatory meroterpenoid from the fungus Aspergillus terreus H010. Natural Product Research, 32(22), 2652-2656. https://doi.org/10.1080/14786419.2017.1375924

Liu, Y., Ruan, Q., Jiang, S., Qu, Y., Chen, J., Zhao, M., Yang, B., Liu, Y., Zhao, Z., & Cui, H. (2019). Cytochalasins and polyketides from the fungus Diaporthe sp. GZU-1021 and their anti-inflammatory activity. Fitoterapia, 137, 104187. https://doi.org/10.1016/j.fitote.2019.104187

Mani, V. M., Soundari, A. J. P. G., & Preethi, K. (2018). Enzymatic and phytochemical analysis of endophytic fungi on Aegle marmelos from Western Ghats of Tamil Nadu, India. Int. J. Life Sci. Pharm. Res., 8(1), 1-8. http://dx.doi.org/10.22376/ijpbs.2018.8.1.l1-8

Manzi, P., Aguzzi, A., & Pizzoferrato, L. (2001). Nutritional value of mushrooms widely consumed in Italy. Food Chemistry, 73(3), 321-325. https://doi.org/10.1016/S0308-8146(00)00304-6

Mao, Z., Lai, D., Liu, X., Fu, X., Meng, J., Wang, A., Wang, X., Sun, W., Liu, Z. L., Zhou, L., & Liu, Y. (2017). Dibenzo‐α‐pyrones: a new class of larvicidal metabolites against Aedes aegypti from the endophytic fungus Hyalodendriella sp. Ponipodef12. Pest Management Science, 73(7), 1478-1485. https://doi.org/10.1002/ps.4481

Marcellano, J. P., Collanto, A. S., & Fuentes, R. G. (2017). Antibacterial activity of endophytic fungi isolated from the bark of Cinnamomum mercadoi. Pharmacognosy Journal, 9(3), 405-409. http://dx.doi.org/10.5530/pj.2017.3.69

Matasyoh, J. C., Dittrich, B., Schueffler, A., & Laatsch, H. (2011). Larvicidal activity of metabolites from the endophytic Podospora sp. against the malaria vector Anopheles gambiae. Parasitology research, 108(3), 561-566. https://doi.org/10.1007/s00436-010-2098-1

Maurya, P., Mohan, L., Sharma, P., & Srivastava, C. N. (2011). Evaluation of larvicidal potential of certain insect pathogenic fungi extracts against Anopheles stephensi and Culex quinquefasciatus. Entomological Research, 41(6), 211-215. https://doi.org/10.1111/j.1748-5967.2011.00347.x

Mei, Y., Zhu, H., Hu, Q., Liu, Y., Zhao, S., Peng, N., & Liang, Y. (2015). A novel polysaccharide from mycelia of cultured Phellinus linteus displays antitumor activity through apoptosis. Carbohydrate Polymers, 124, 90-97. https://doi.org/10.1016/j.carbpol.2015.02.009

Mishra, Y., Singh, A., Batra, A., & Sharma, M. M. (2014). Understanding the biodiversity and biological applications of endophytic fungi: a review. J. Microbiol. Biochem. Technol., S8(01). http://dx.doi.org/10.4172/1948-5948.S8-004

Moglad, E. H. O., & Saadabi, A. M. (2012). Screening of antimicrobial activity of wild mushrooms from Khartoum State of Sudan. Microbiology Journal, 2(2), 64-69. https://dx.doi.org/10.3923/mj.2012.64.69

Mohanty, S. S., & Prakash, S. (2009). Effects of culture media on larvicidal property of secondary metabolites of mosquito pathogenic fungus Chrysosporium lobatum (Moniliales: Moniliaceae). Acta Tropica, 109(1), 50-54. https://doi.org/10.1016/j.actatropica.2008.09.013

Mollaei, S., Khanehbarndaz, O., Gerami-Khashal, Z., & Ebadi, M. (2019). Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin. Phytochemistry, 168, 112116. https://doi.org/10.1016/j.phytochem.2019.112116

Nagda, V., Gajbhiye, A., & Kumar, D. K., (2017). Isolation and characterization of endophytic fungi from Calotropis procera for their antioxidant activity. Asian J. Pharm. Clin. Res., 10(3), 254-258. https://doi.org/10.22159/ajpcr.2017.v10i3.16125

Ng, S. H., Zain, M. S., M., Shazwan, M., Zakaria, F., Ishak, W., Rosli, W., & Nizam, W. A. (2015). Hypoglycemic and antidiabetic effect of Pleurotus sajor-caju aqueous extract in normal and streptozotocin-induced diabetic rats. BioMed Research International, 2015, Article ID 214918. https://doi.org/10.1155/2015/214918

Nimse, S. B., & Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. RSC Advances, 5(35), 27986-28006. https://doi.org/10.1039/C4RA13315C

Öztürk, C., & Atila, F. (2021). In vitro, In vivo and Clinical Assesment about the Medicinal Characteristics of Mushrooms. Journal of Faculty of Pharmacy of Ankara University, 45(2), 344-378. https://doi.org/10.33483/jfpau.779015

Pandimeena, M., Prabu, M., Sumathy, R., & Kumuthakalavalli, R. (2015). Evaluation of phytochemicals and in vitro anti-inflammatory, anti-diabetic activity of the white oyster mushroom, Pleurotus florida. International Research Journal of Pharmaceutical and Applied Science, 5(1), 16-21.

Pavithra, N., Sathish, L., Babu, N., Venkatarathanamma, V., Pushpalatha, H., Reddy, G. B., & Ananda, K. (2014). Evaluation of α-amylase, α-glucosidase and aldose reductase inhibitors in ethyl acetate extracts of endophytic fungi isolated from antidiabetic medicinal plants. Int. J. Pharm. Sci. Res., 5(12), 5334-5341. http://dx.doi.org/10.13040/IJPSR.0975-8232.5(12).5334-41

Peláez, F., Collado, J., Arenal, F., Basilio, A., Cabello, A., Matas, M. T. D., Garcia, J. B., Del Val, A. G., Gonzales, V., Gorrochategui, J., Hernandez, P., Martin, I., Platas, G., & Vicente, F. (1998). Endophytic fungi from plants living on gypsum soils as a source of secondary metabolites with antimicrobial activity. Mycological Research, 102(6), 755-761. https://doi.org/10.1017/S0953756297005662

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian Journal of Clinical Biochemistry, 30(1), 11-26. https://doi.org/10.1007%2Fs12291-014-0446-0

Phongpaichit, S., Rungjindamai, N., Rukachaisirikul, V., & Sakayaroj, J. (2006). Antimicrobial activity in cultures of endophytic fungi isolated from Garcinia species. FEMS Immunology & Medical Microbiology, 48(3), 367-372. https://doi.org/10.1111/j.1574-695x.2006.00155.x

Qu, L., Li, S., Zhuo, Y., Chen, J., Qin, X., & Guo, G. (2017). Anticancer effect of triterpenes from Ganoderma lucidum in human prostate cancer cells. Oncology Letters, 14(6), 7467-7472. https://doi.org/10.3892%2Fol.2017.7153

Rajasekaran, M., & Kalaimagal, C. (2011). In vitro antioxidant activity of ethanolic extract of a medicinal mushroom, Ganoderma lucidum. Journal of Pharmaceutical Sciences and Research, 3(9), 1427-1433.

Ramesh, C. H., & Pattar, M. G. (2010). Antimicrobial properties, antioxidant activity and bioactive compounds from six wild edible mushrooms of western ghats of Karnataka, India. Pharmacognosy research, 2(2), 107. https://doi.org/10.4103/0974-8490.62953

Rateb, M. E., & Ebel, R. (2011). Secondary metabolites of fungi from marine habitats. Natural product Reports, 28(2), 290-344. https://doi.org/10.1039/c0np00061b

Sałata, A., Lemieszek, M., & Parzymies, M. (2018). The nutritional and health properties of an oyster mushroom (Pleurotus ostreatus (Jacq. Fr) P. Kumm.). Acta Scientiarum Polonorum Hortorum Cultus, 17, 185-197. http://dx.doi.org/10.24326/asphc.2018.2.16

Salunkhe, R. B., Patil, S. V., Patil, C. D., & Salunke, B. K. (2011). Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Parasitology research, 109(3), 823-831. https://doi.org/10.1007/s00436-011-2328-1

Sathiyanathan, M., & Umarajan, K. M. (2019). Larvicidal activity of endophytic fungi isolated from selected medicinal plants on Aedes aegypti. Journal of Pharmacognosy and Phytochemistry, 8(2), 247-253.

Seetharaman, P., Gnanasekar, S., Chandrasekaran, R., Chandrakasan, G., Syed, A., Hodhod, M. S., Ameen, F., & Sivaperumal, S. (2017). Isolation of limonoid compound (Hamisonine) from endophytic fungi Penicillium oxalicum LA-1 (KX622790) of Limonia acidissima L. for its larvicidal efficacy against LF vector, Culex quinquefasciatus (Diptera: Culicidae). Environmental Science and Pollution Research, 24(26), 21272-21282. https://doi.org/10.1007/s11356-017-9770-2

Sharif, S., Atta, A., Huma, T., Shah, A. A., Afzal, G., Rashid, S., Shahid, M., & Mustafa, G. (2018). Anticancer, antithrombotic, antityrosinase, and anti‐α‐glucosidase activities of selected wild and commercial mushrooms from Pakistan. Food Science and Nutrition, 6(8), 2170-2176. https://doi.org/10.1002/fsn3.781

Shehata, Y. M., Hussein, M. Y., Abdelazim, A. M., Etewa, R. L., & Alhady, M. H. (2010). Hypoglycemic effect of button (Agaricus bisporus) and oyster (Pleurotus ostreatus) mushrooms on streptozotocin induced diabetic mice. Biohealth Science Bulletin, 2(2), 48-51.

Skalicka-Wozniak, K., Szypowski, J., Los, R., Siwulski, M., Sobieralski, K., Glowniak, K., & Malm, A. (2012). Evaluation of polysaccharides content in fruit bodies and their antimicrobial activity of four Ganoderma lucidum (W Curt.: Fr.) P. Karst. strains cultivated on different wood type substrates. Acta Societatis Botanicorum Poloniae, 81(1), 17-21. http://dx.doi.org/10.5586/asbp.2012.001

Smith, H., Doyle, S., & Murphy, R. (2015). Filamentous fungi as a source of natural antioxidants. Food Chemistry, 185, 389-397. https://doi.org/10.1016/j.foodchem.2015.03.134

Sohretoglu, D., & Huang, S. (2018). Ganoderma lucidum polysaccharides as an anti-cancer agent. Anti-Cancer Agents in Medicinal Chemistry, 18(5), 667-674. https://doi.org/10.2174/1871520617666171113121246

Soyuçok, A., Doğantürk, M., Yavuz, O., Küçükiğci, C. B., & Kıyak, A. (2022). Determination of antioxidant and antimicrobial activities of ethanolic extract from Suillus granulatus. Veterinary Journal of Mehmet Akif Ersoy University, 7(1), 7-12. https://doi.org/10.24880/maeuvfd.992073

Stanley, H. O., Onwuna, D. B., & Ugboma, C. J. (2018). The antimicrobial activity of sclerotia of Pleurotus tuberregium (Osu) on some clinical isolates. Journal of Advances in Microbiology, (8), 4, 1-4. http://dx.doi.org/10.9734/JAMB/2018/39664

Stojkovic, D., Smiljkovic, M., Ciric, A., Glamoclija, J., Van Griensven, L., & Ferreira, I. C., Sokovic, M. (2019). An insight into antidiabetic properties of six medicinal and edible mushrooms: Inhibition of α-amylase and α-glucosidase linked to type-2 diabetes. South African Journal of Botany, 120, 100-103. https://doi.org/10.1016/j.sajb.2018.01.007

Sugiharto, S., Yudiarti, T., & Isroli, I. (2016). Assay of antioxidant potential of two filamentous fungi isolated from the Indonesian fermented dried cassava. Antioxidants (Basel), 5(1), 6. https://doi.org/10.3390%2Fantiox5010006

Suseem, S. R., & Saral, A. M. (2013). Analysis on essential fatty acid esters of mushroom Pleurotus eous and its antibacterial activity. Asian J Pharm Clin Res, 6(1), 188-191.

Tian, J., Liu, X. C., Liu, Z. L., Lai, D., & Zhou, L. (2016). Larvicidal spirobisnaphthalenes from the endophytic fungus Berkleasmium sp. against Aedes albopictus. Pest Management Science, 72(5), 961-965. https://doi.org/10.1002/ps.4075

Tiring, G., Satar, S., & Özkaya, O. (2021). Secondary Metabolites. Journal of Agricultural Faculty of Bursa Uludag University, 35(1), 203-215.

Tiwari, P., Nathiya, R., & Mahalingam, G. (2017). Antidiabetic activity of endophytic fungi isolated from Ficus religiosa. Asian Journal of Pharmaceutical and Clinical Research, 10(4), 59-61. http://dx.doi.org/10.22159/ajpcr.2017.v10i4.14718

Tomonobu, N., Komalasari, N. L. G. Y., Sumardika, I. W., Jiang, F., Chen, Y., Yamamoto, K. I., Kinoshita, R., Murata, H., Inonue, Y., & Sakaguchi, M. (2020). Xylitol acts as an anticancer monosaccharide to induce selective cancer death via regulation of the glutathione level. Chemico-Biological Interactions, 324, 109085. https://doi.org/10.1016/j.cbi.2020.109085

Tong, H., Xia, F., Feng, K., Sun, G., Gao, X., Sun, L., Jiang, R., Tian, D., & Sun, X. (2009). Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technology, 100(4), 1682-1686. https://doi.org/10.1016/j.biortech.2008.09.004

Uzor, P. F., Osadebe, P. O., & Nwodo, N. J. (2017). Antidiabetic activity of extract and compounds from an endophytic fungus Nigrospora oryzae. Drug research, 67(05), 308-311. https://doi.org/10.1055/s-0042-122777

Vincent, M., Philippe, E., Everard, A., Kassis, N., Rouch, C., Denom, J., Takeda, Y., Uchiyama, S., Delzenne, N. M., Cani, P. D., Migrenne, S., & Magnan, C. (2013). Dietary supplementation with Agaricus blazei Murill extract prevents diet‐induced obesity and insulin resistance in rats. Obesity, 21(3), 553-561. https://doi.org/10.1002/oby.20276

Wada, T., Sumardika, I. W., Saito, S., Ruma, I. M. W., Kondo, E., Shibukawa, M., & Sakaguchi, M. (2017). Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 1061, 209- 219. https://doi.org/10.1016/j.jchromb.2017.07.022

Wang, X., Sun, D., Tai, J., & Wang, L. (2017). Ganoderic acid A inhibits proliferation and invasion, and promotes apoptosis in human hepatocellular carcinoma cells. Molecular Medicine Reports, 16(4), 3894-3900. https://doi.org/10.3892/mmr.2017.7048

Waqas, H. M., Akbar, M., Khalil, T., Ishfaq, M., Aslam, N., Chohan, S. A., & Iqbal, M. S. (2018). Identifıcation of natural antifungal constituents from Agaricus bisporus (Je Lange) Imbach. Applied Ecology and Environmental Research, 16(6), 7937-7951. https://doi.org/10.15666/aeer/1606_79377951

Wu, X., Zheng, S., Cui, L., Wang, H., & Ng, T. B. (2010). Isolation and characterization of a novel ribonuclease from the pink oyster mushroom Pleurotus djamor. J. Gen. Appl. Microbiol., 56(3), 231-239. https://doi.org/10.2323/jgam.56.231

Wu, K., Na, K., Chen, D., Wang, Y., Pan, H., & Wang, X. (2018). Effects of non-steroidal anti-inflammatory drug-activated gene-1 on Ganoderma lucidum polysaccharides-induced apoptosis of human prostate cancer PC-3 cells. International Journal of Oncology, 53(6), 2356-2368. https://doi.org/10.3892/ijo.2018.4578

Xu, T., B., Beelman, R. B., & Lambert, J. D. (2012). The cancer preventive effects of edible mushrooms. Anticancer Agents Med Chem., 12(10), 1255-1263. https://doi.org/10.2174/187152012803833017

Yadav, M., Yadav, A., &Yadav, J. P. (2014). In vitro antioxidant activity and total phenolic content of endophytic fungi isolated from Eugenia jambolana Lam. Asian Pacific Journal of Tropical Medicine, 7, 256-261. https://doi.org/10.1016/s1995-7645(14)60242-x

Zhang, Y., Ma, G., Fang, L., Wang, L., & Xie, J. (2014). The immunostimulatory and anti-tumor activities of polysaccharide from Agaricus bisporus (brown). Journal of Food and Nutrition Research, 2(3), 122-126. http://dx.doi.org/10.12691/jfnr-2-3-5

Zhang, Y., Li, Q., Shu, Y., Wang, H., Zheng, Z., Wang, J., & Wang, K. (2015). Induction of apoptosis in S180 tumour bearing mice by polysaccharide from Lentinus edodes via mitochondria apoptotic pathway. Journal of Functional Foods, 15, 151-159. https://doi.org/10.1016/j.jff.2015.03.025

Zhang, L., Liu, Y., Ke, Y., Liu, Y., Luo, X., Li, C., Zhang, Z., Liu, A., Shen, L., Chen, H., Hu, B., Wu, H., Wu, W., Lin, D., & Li, S. (2018). Antidiabetic activity of polysaccharides from Suillellus luridus in streptozotocin-induced diabetic mice. International Journal of Biological Macromolecules, 119, 134-140. https://doi.org/10.1016/j.ijbiomac.2018.07.109

Downloads

Published

2022-12-15

How to Cite

Atli, B. ., Ozcakir, B. ., Isik, B., Mursaliyeva, V., & Mammadov, R. . (2022). Secondary Metabolites in Fungi. Natural Products and Biotechnology, 2(2), 114–138. Retrieved from https://natprobiotech.com/index.php/natprobiotech/article/view/41

Issue

Section

Review Article

Similar Articles

You may also start an advanced similarity search for this article.