The Heavy Metal Biomonitoring Study Using Transplanted Lichen, Pseudevernia furfuracea (L.) Zopf, in Nevşehir, Türkiye

Authors

Keywords:

Biomonitoring, Heavy metals, Pseudevernia furfuracea, Nevşehir, Türkiye

Abstract

The goal of this research was to measure the level of air pollution in Nevşehir and to develop an air pollution map of the city utilizing Pseudevernia furfuracea (L.) Zopf as a bioindicator. In July 2002, Lichen specimens were obtained from a clean region in the Yapraklı Mountains, Çankırı, and transplanted to four distinct sites in Nevşehir. Lichen specimens were obtained again three and six months afterwards, respectively. Inductively Coupled Plasma Spectrometry (ICP-OES) was utilized to determine heavy metal amounts (Cd, Cu, Mn, Ni, Pb, and Zn). The Dimethyl sulfoxide (DMSO) technique was applied for calculating the chlorophyll a and b concentrations. According to the findings of P. furfuracea heavy metal analyses, heavy metals contents of exposed stations were found to be in first period in range of 0.26–0.39 μg g−1, 0,014–0,028 μg g−1, 1,52–2,81 μg g−1, 0,25–0,34 μg g−1,0.44–0,60 μg g−1, and 0,15–0,24 μg g−1, in second period in range of 0,37-0,44 μg g−1,0,022-0,027 μg g−1,1,88-2,77 μg g−1 ,0,25-0,32 μg g−1 , 0,47-0,60 μg g−1 and 0,18-0,35 μg g−1 for Cu, Cd, Mn, Ni, Pb, and Zn. High levels can be attributed to traffic, autumn/winter heating, and industrial operations, particularly in the city center, caused primarily by heating operations and traffic. In accordance with heavy metal analysis outcomes, P. furfuracea performed effectively as a bioindicator and showed the presence of air pollution in Nevşehir.

References

Adamo, P., Giordano, S., Vingiani, S., Cobianchi, C.R., & Violante, P. (2003). Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122, 91-103.

Backor, M., Paulikova, K., Geralska, A., & Davidson, R. (2003). Monitoring of air pollution in Kosice (eastern Slovakia) using lichens. Polish Journal of Environmental Studies, 2, 141-150.

Barnes, J.D., Balague, L., Manrique, E., Elvira, S., & Davison, A.W. (1992). A reappraisal of the use of DMSO for the extraction and determination of chlorophyll a and b in lichens and higher plants. Environmental and Experimental Botany, 32, 85- 100.

Beekley, P.K., & Hoffman, G.R. (1981). Effects of sulphur dioxide fumigation on photosynthesis, respiration, and chlorophyll content of selected lichens. Bryologist, 84, 379-390.

Benhamada, O., Laib, E., Benhamada, N., Charef, S., Chennah, M., Chennouf, S., Derbak, H., & Leghouchi, E. (2023). Oxidative stress caused by lead in the lichen Xanthoria parietina. Acta Scientiarum, Biological Sciences, 45, e63221. https://doi.org/10.4025/actascibiolsci.v45i1.63221

Boonpeng, C., Sangiamdee, D., Noikrad, S., & Boonpragob, K. (2023). Assessing Seasonal Concentrations of Airborne Potentially Toxic Elements in Tropical Mountain Areas in Thailand Using the Transplanted Lichen Parmotrema Tinctorum (Despr. ex Nyl.) Hale. Forests, 14(3), 611. https://doi.org/10.3390/f14030611

Carreras, H.A., Gudiño, G.L., & Pignata, M.L. (1998). Comparative biomonitoring of atmospheric quality in five zones of Córdoba city (Argentina) employing the transplanted lichen Usnea sp. Environmental Pollution, 103, 317–325.

Carreras, H.A., Gudiño, G.L., & Pignata, M.L. (2001). Comparison among air pollutants, meteorological conditions and some chemical parameters in the transplanted lichen Usnea amblyoclada. Environmental Pollution, 111, 45-52.

,Carreras, H.A., Rodriguez, J.H., Gonzalez, C.M., Wannaz, E.D., Garcia, F. F., Perez, C.A., & Pignata. M.L. (2009). Assessment of the relationship between total suspended particles and the response of two biological indicators transplanted to an urban area in central Argentina. Atmospheric Environment, 43(18), 2944-2949.https://doi.org/10.1016/j.atmosenv.2009.02.060

Carreras, H.B., & Pignata, M.L. (2002). Biomonitoring of heavy metals and air quality in Cordoba City, Argentina, using transplanted lichens. Environmental Pollution, 117, 77-87.

Chahloul, N., Khadhri, A., Vannini, A., Mendili, M., Raies, A., & Loppi, S. (2023). Selecting the species to be used in lichen transplant surveys of air pollution in Tunisia. Environmental Monitoring and Assessment, 195(5). https://doi.org/10.1007/s10661-023-11219-4

Conti, M. E., Rapa, M., Pla, R., Jasan, R., Tudino, M. B., Canepari, S., Massimi, L., & Astolfi, M. L. (2023). Elemental and chemometric analysis of baseline gradient contamination in Usnea barbata lichens from Tierra del Fuego (South Patagonia). Microchemical Journal, 185, 108283. https://doi.org/10.1016/j.microc.2022.108283

De Filippis, L.F., & Pallaghy, C.K. (1994). Heavy metals: sources and biological effects. In: Rai LC, Gaur JP & Soeder CJ, editors. Algae and Water Pollution. 31–77. E. Stuttgart, Germany: Schweizerbart’sche Verlagsbuchhandlung.

Emberger, L. (1955). Une classification biogéographique des climats. Annals of Applied Biology, 31, 249-255.

General Directorate of Security, (Emniyet Genel Müdürlüğü). (2003). Trafik İstatistik Yıllığı (Statistical Almanac of Traffics). İdari ve Mali İşler Daire Başkanlığı, Basımevi Şube Müdürlüğü, Ankara, Türkiye.

Fields, R.D., & St Clair, L.L., (1984). The effects of SO2 on photosynthesis and carbohydrate transfer in the two lichens: Collema polycarpon and Parmelia chlorochroa. American Journal of Botany, 71, 986-998.

Garty, J., Ronan, R., & Galen, M. (1985). Correlation between chlorophyll degradation and the amount of some elements in the lichen Ramalina duriaei (De Not.). Jatta. Environmental and Experimental Botany, 25, 67-74. https://doi.org/10.1016/0098-8472(85)90049-8

Garty, J., Karary, Y., & Harel, J. (1993). The impact of air pollution on the integrity of cell membranes and chlorophyll in the lichen Ramalina duriaei (De not.) Bagl. transplanted to industrial sites in Israel. Archives of Environmental Contamination and Toxicology, 24, 455-460.

Garty, J. (2001). Biomonitoring atmospheric heavy metals with lichens: Theory and application. Critical Reviews in Plant Sciences, 20(4),309-371.

Garty, J., Sharon, T., Levin, T., & Lehr, H. (2003). Lichens as biomonitors around a coal-fired power station in Israel. Environmental Research, 91, 186-198.

GMGSF-9. (2008). 9th Global Major Groups and Stakeholders Forum. A CSO Report on the Application of Environmental Norms by Military Establishments, Monaco, France, 19 Feb 2008.

Godzik, S., & Linskens, H.F. (1974). Concentration changes of free amino acid in primary bean leaves after continuous and interrupted SO2 fumigation and recovery. Environmental Pollution, 7, 25-38.

Goodman, G.T., & Roberts, T.M. (1971). Plants and soils as indicators of metal in the air. Nature, 231,287-292.

Halici, M.G., Aksoy, A., & Demirezen, D. (2005). Protoparmeliopsis muralis (Schreb.) M.Choisy liken türü kullanılarak Erciyes Dağı ve çevresindeki ağır metal kirliliğinin ölçülmesi. I. Ulusal Erciyes Sempozyumu Bildiriler Kitabı, Kayseri,Türkiye, 23-25 Ekim 2003, pp. 456-461.

Harikrishna, S., & Mukherjee, S. (2024). Biomonitoring with Lichens: Evaluating Heavy Metal Concentrations, Environmental Factors, and Lichen Diversity in Bengaluru, Karnataka, India. Environment and Ecology, 42(1A), 213–219. https://doi.org/10.60151/envec/zlov2341

Hawksworth, D.L., & Rose, F. (1996). Lichens as Pollution Monitors. London, UK, Edward Arnold Ltd.

Hernández, J. M., De La Fournière, E. M., Ramos, C. P., Debray, M. E., Plá, R. R., Jasan, R. C., Invernizzi, R., Brizuela, L. G. R., & Cañas, M. S. (2024). Contribution of Mine-Derived Airborne Particulate Matter to Ca, Fe, Mn and S Content and Distribution in the Lichen Punctelia hypoleucites Transplanted to Bajo de la Alumbrera Mine, Catamarca (Argentina). Archives of Environmental Contamination and Toxicology, 86(2), 140–151. https://doi.org/10.1007/s00244-024-01053-1

İçel, Y., & Çobanoğlu, G. (2009). Biomonitoring of atmospheric heavy metal pollution using lichens and mosses in the city of Istanbul, Turkey. FEB, 18(11), 2066–2071.

Işık, V., & Yıldız, A. (2021). Xanthoria parietina (L.) Th.Fr. likeni kullanılarak yapılan biyoizleme (=biomonitoring) çalışmaları. MTA Doğal Kaynaklar ve Ekonomi Bülteni., 31, 87-99.

Işık, V., & Yıldız, A. (2022). The heavy metal biomonitoring study using lichen Xanthoria parietina (L.) Th. Fr. in Ankara province (Turkey). EQA - International Journal of Environmental Quality, 52(1), 1–10.

Işık, V., & Yıldız, A. (2023). Likenlerde Ağır Metal Alınma Mekanizmaları. Kafkas Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 15(2), 65-71.

Işık, V., Vardar, Ç., Aksoy, A., & Yıldız, A. (2023) Biomonitoring of heavy metals by Pseudevernia furfuracea (L.) Zopf in Aksaray city, Turkey. EQA - International Journal of Environmental Quality, 56(1), 52–61.

Jahns, M. (1973). Anatomy, morphology and development. Chapter 1. Edited by V. Ahmadjian and M.E. Hale, In The Lichens. 3-58, New York, Academic Press.

Khodadadi, R., Sohrabi, M., Loppi, S., Birgani, Y. T., Babaei, A. A., Neisi, A., Baboli, Z., Dastoorpoor, M., & Goudarzi, G. (2023). Atmospheric pollution by potentially toxic elements: measurement and risk assessment using lichen transplants. International Journal of Environmental Health Research, 34(3), 1270–1283. https://doi.org/10.1080/09603123.2023.2174256

Kováčik, J., Husáková, L., Vlassa, M., Piroutková, M., Vydra, M., Patočka, J., & Filip, M. (2023). Elemental profile identifies metallurgical pollution in epiphytic lichen Xanthoria parietina and (hypo)xanthine correlates with metals. Science of the Total Environment, 883, 163527. https://doi.org/10.1016/j.scitotenv.2023.163527

Kumari, K., Kumar, V., Nayaka, S., Saxena, G., & Sanyal, I. (2023). Physiological alterations and heavy metal accumulation in the transplanted lichen Pyxine cocoes (Sw.) Nyl. in Lucknow city, Uttar Pradesh. Environmental Monitoring and Assessment, 196(1). https://doi.org/10.1007/s10661-023-12256-9

Loppi, S., Cenni, E., Bussotti, F., & Ferretti, M. (1997). Epiphytic lichens and tree leaves as biomonitors of trace elements released by geothermal power plants. Chemistry and Ecology, 14, 31-38.

Loppi, S., & Pirintsos, S.A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 121, 327-332.

Lu, C.M., Chau, C.W., & Zhang, J.H. (2000). Acute Toxicity of Excess Mercury on The Photosynthetic Performance of Cyanobacterium, S. platensis - Assessment by Chlorophyll Fluorescence Analysis. Chemosphere, 41, 191-196.

Markert, B. (1993). Plants as Biomonitors, Indicators for Heavy Metals in the Terrestrial Environments. Weinheim, VCH Publishers.

Morillas, L. (2024). Lichens as Bioindicators of Global Change Drivers. Journal of Fungi, 10(1), 46. https://doi.org/10.3390/jof10010046

Niepsch, D., Clarke, L. J., Jones, R. G., Tzoulas, K., & Cavan, G. (2024). Lichen biomonitoring to assess spatial variability, potential sources and human health risks of polycyclic aromatic hydrocarbons (PAHs) and airborne metal concentrations in Manchester (UK). Environmental Monitoring and Assessment, 196(4). https://doi.org/10.1007/s10661-024-12522-4

Özkök, E. A., & Çobanoğlu, G. (2023). Spatial evaluation of air quality by biomonitoring of toxic element accumulation in lichens in urban green areas and nature parks on the Anatolian side of Istanbul. Environmental Monitoring and Assessment, 195(7). https://doi.org/10.1007/s10661-023-11496-z

Pearson, L.C., & Skye, E. (1965). Air pollution effects pattern of photosynthesis in. Parmelia sulcata, a corticolous lichen. Science, 148, 1600-1602.

Puckett, K.J., Richardson, D.H.S., Flora, W.P., & Nieboer, E. (1974). Photosynthetic 14C fixation by the lichen Umbilicaria muehlenbergii (Ach.) Tuck. following short exposures to aqueous sulphur dioxide. New Phytologist, 73, 1183-1192.

Ra, H.S.Y., Geiser, L.H., & Crang, RFE. (2005). Effects of season and low-level air pollution on physiology and element content of lichens from the U.S. Pacific Northwest. Science of the Total Environment 343: 155-167. https://doi.org/10.1016/j.scitotenv.2004.10.003

Rangel-Osornio, V., Gómez-Reyes, V. M., Cuevas-Villanueva, R. A., Fernández-Salegui, A. B., Bermea, O. M., & Álvarez, E. H. (2022). Biomonitoring of airborne trace elements using transplanted lichens around a paper industry (Morelia, Mexico). Environmental Monitoring and Assessment, 194(4). https://doi.org/10.1007/s10661-022-09873-1

Salleh, S. N. A. S., & Abas, A. (2023). Monitoring Heavy Metal Concentrations Using Transplanted Lichen in a Tourism City of Malaysia. Sustainability, 15(7), 5885. https://doi.org/10.3390/su15075885

Simonetti, A., Gariepy, C., & Carignan, J. (2003). Tracing sources of atmospheric pollution in western Canada using the Pb isotopic composition and heavy metal abundances of epiphytic lichens. Atmospheric Environment, 37, 2853-2865.

Sloof, J. (1995). Lichens as quantitative biomonitors for atmospheric trace element deposition, using transplants. Atmospheric Environment, 29, 11-20.

Stevenson, R.J., Bothwell, M.L., & Lowe, RL. (1996). Algal Ecology-Freshwater Benthic Ecosystems. London, UK, Academic Press.

Takano, A.P.C., Rybak, J., & Veras, M.M. (2024),Bioindicators and human biomarkers as alternative approaches for cost-effective assessment of air pollution exposure. Front. Environ. Eng., 3, 1346863. https://doi.org/10.3389/fenve.2024.1346863

TSI, (Turkish Statistical Institute). (2024). https://nip.tuik.gov.tr/. Retrieved: 27.06.2024.

Turkish State Meteorological Service. (2008). Nevşehir İli Meteorolojik Verileri (1970 - 2008).

U.S. Environmental Protection Agency, (1995). AP-42, Fifth Edition, Office of Air Quality Planning and Standards. Research Triangle Park, North Carolina.

Valkovic, V. (1983). Trace Elements in Coal, Vol I & II. Boca Raton, Florida CRC Press.

Van Dobben, H.F., Wolterbeek, H.T., Wamelink, G.W.W., & Ter, Braak. C.J.F. (2001). Relationship between epiphytic lichens, trace elements and gaseous atmospheric pollutants. Environmental Pollution, 112,163-169.

Woolhouse, H.M. (1983). Toxicity and Tolerance in the Responses of Plants to Metals. In: Lange OL, Nobel PS, Osmond CB & Zielgler H, (Eds.), Encyclopedia of Plant Physiology. New Series, 12, 246- 299.

Yenisoy-Karakas, S., & Tuncel, S.G. (2004). Geographic patterns of elemental deposition in the Aegean region of Turkey indicated by the lichen, Xanthoria parietina (L.) Th. Fr.. Science of the Total Environment, 329, 43-60.

Yıldız, A., Aksoy, A., Tug, G.N., Işlek, C., & Demirezen, D. (2008). Biomonitoring of heavy metals by Pseudevernia furfuracea (L.) Zopf in Ankara (Turkey). Journal of Atmospheric Chemistry, 60, 71-81.

Yıldız, A. Aksoy, A. Akbulut, G. Demirezen, D. İşlek, C. Altuner, E. & Duman, F. (2011) Correlation between chlorophyll degradation and the amount of heavy metals found in Pseudevernia furfuracea in Kayseri (Turkey). Ekoloji., 20(78), 82-88.

Yıldız, A., Vardar, Ç., Aksoy, A., & Ünal, E. (2018). Biomonıtoring of heavy metals deposition with Pseudevernia furfuracea (L.) Zopf in Çorum city. Turkey. Journal of Scientific Perspectives., 2(1), 9-22.

Zakhozhiy, I. G., & Shelyakin, M. A. (2024). Accumulation and Localization of Metals in Lichen Thallus Under Conditions of Dust Pollution During Open Mining of Boxite Deposits. Russian Journal of Ecology, 55(1), 32–41. https://doi.org/10.1134/s1067413624010090

Downloads

Published

2024-06-15

How to Cite

Isik, V., & Yildiz, A. (2024). The Heavy Metal Biomonitoring Study Using Transplanted Lichen, Pseudevernia furfuracea (L.) Zopf, in Nevşehir, Türkiye. Natural Products and Biotechnology, 4(1), 1–18. Retrieved from https://natprobiotech.com/index.php/natprobiotech/article/view/57

Issue

Section

Research Article