Phenolic Compounds Screening and Potential of Larvicidal Activity of Water Extract of Cyclamen cilicium Boiss. & Heldr.

Authors

  • Murat Turan Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
  • Ramazan Mammadov Department of Molecular Biology and Genetics, Faculty of Science, Muğla Sıtkı Koçman University, Muğla, Turkey

Keywords:

Cyclamen cilicium, Musca domestica, Culex pipiens, HPLC

Abstract

This study was designed to phenolic compound analysis with UPLC-ESI-MS/MS, larvicidal (against Musca domestica and Culex pipiens) activities with fresh and underground parts of water extract of Cyclamen cilicium Boiss. & Heldr. Thirty one standard phenolic compounds were used in UPLC-ESI-MS/MS analysis, and ferulic acid was found to value 4483.34 mg/kg as the major compound. The fresh part was found a potential larvicidal activity with 33.33 ± 4.81 % against M. domestica and the fresh part was found potential larvicidal activity than underground part with 0.43 ± 0.09 mg/mL, LC50 against Cx. pipiens. These results about C. cilicium were shown as a potential biolarvicidal potential and can be used in the pharmaceutical, agricultural industry.

References

AnalystSoft Inc. Released. (2015). Statplus Professional for Windows, Version 5.9.8.5, Walnut, CA: AnalystSoft Inc.

Çetin, H., Erler, F., & Yanikoglu, A. (2006). Larvicidal Activity of Novaluron, a Chitin Synthesis Inhibitor, against the Housefly, Musca domestica. J. Insect. Sci., 6(50), 1-4. https://doi.org/10.1673/031.006.5001

Chintalchere, J. M., Lakare, S., & Pandit R. S. (2013). Bioefficacy of Essential Oils of Thymus vulgaris and Eugenia Caryophyllus against Housefly, Musca domestica L. The Bioscan, 8(3), 1029–1034.

Cossetin, L. F., Santi, E. M. T., Garlet, Q. I., Matos, A. F. I. M., De Souza, T. P., Loebens, L., Heinzmann, B. M., & Monteiro, S. G. (2021). Comparing the efficacy of nutmeg essential oil and a chemical pesticide against Musca domestica and Chrysomya albiceps for selecting a new insecticide agent against synantropic vectors. Experimental Parasitology, 225, 108104. https://doi.org/10.1016/j.exppara.2021.108104

Glunt K. D., Abílio A. P., Bassat Q., Bulo H., Gilbert A. E., Huijben S., Manaca M. N., Macete E., Alonso P., & Paaijmans K. P. (2015). Long-lasting insecticidal nets no longer effectively kill the highly resistant Anopheles funestus of southern Mozambique. Malaria Journal, 14(1), 298.

Güner, A., Aslan, S., Ekim, T., Vural, M., & Babaç, M.T. (2012). Türkiye Bitkileri Listesi-Damarlı Bitkiler (in Turkish). Nezahat Gökyiğit Foundation Publications, İstanbul.

IBM Corp. Released. (2017). IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp.

Kamaraj C., & Rahuman A. A. (2010). Larvicidal and adulticidal potential of medicinal plant extracts from south India against vectors. Asian Pac. J. Trop. Med., 3(12), 948–953. https://doi.org/10.1016/S1995-7645(11)60006-0

Kaufman, P. E., Scott, J. G., & Rutz, D. A. (2001). Monitoring insecticide resistance in house flies (Diptera: Muscidae) from New York dairies. Pest Manag. Sci., 57, 514– 521. https://doi.org/10.1002/ps.319

Khamesipour, F., Lankarani, K. B., Honarvar, B., & Kwenti, T. E. (2018). A systematic review of human pathogens carried by the housefly (Musca domestica L.). BMC Public Health, 18, 1049. https://doi.org/10.1186/s12889-018-5934-3

Kıvrak, Ş., & Kıvrak, İ. (2017). Assessment of Phenolic Profile of Turkish Honeys. Int. J. Food Prop., 20, 864-876. https://doi.org/10.1080/10942912.2016.1188307

Mahyoub, J. A. (2021). Bioactivity of two marine algae extracts and their synthesized silver nanoparticles as safe controls against Musca domestica housefly. Entomological Research., 1-8, 2021. https://doi.org/10.1111/1748-5967.12512

Metin, H., Aydın, C., Ozay, C., & Mammadov, R. (2013). Antioxidant Activity of the Various Extracts of Cyclamen graecum Link Tubers and Leaves from Turkey. Journal of the Chemical Society of Pakistan, 35, 1332-1336.

Nhaca, I. A. A., Chissico, H. M., Massango, P. A., Muiambo, H. F., Focke, W. W., & Munyemana, F. (2020). Evaluation of Larvicidal Activity of Selected Plant Extracts and Essential Oil against Musca domestica and Anopheles arabiensis. International Journal of Medicinal Plants and Natural Products, 6(4), 9-19. https://doi.org/10.20431/2454-7999.0604002

Nisar, M. S., İsmail, M. A., Ramzan, H., Maqbool, M. M., Ahmed, T., Ghramh, H. A., Khalofah, A., Kmet, J., Horvat, M., & Farooq, S. (2021). The impact of different plant extracts on biological parameters of Housefly [Musca domestica (Diptera: Muscidae)]: Implications for Management. Saudi Journal of Biological Sciences, (In Press). https://doi.org/10.1016/j.sjbs.2021.03.070

Oz, E., Koc, S., Dusen, O., Mammadov, R., & Cetin, H. (2013). Larvicidal Activity of Cyclamen (Myrsinaceae) Extracts against the Larvae of West Nile Virus Vector Culex pipiens L. (Diptera: Culicidae). Asian Pacific Journal of Tropical Medicine, 6(6), 449-452. https://doi.org/10.1016/S1995-7645(13)60072-3

Rodrigues, G. C. S., Maia, M. D. S., Cavalcanti, A. B. S., Barros, R. P. C., Scotti, L., Cespedes-Acuna, C., Muratov, E. N., & Scotti, M. T. (2021). Computer-assisted discovery of compounds with insecticidal activity against Musca domestica and Mythimna separata. Food and Chemical Toxicology, 147, 111899. https://doi.org/10.1016/j.fct.2020.111899

Sarikurkcu, C. (2011). Antioxidant Activities of Solvent Extracts from endemic Cyclamen mirabile Hildebr. Tubers and Leaves. African Journal of Biotechnology, 10, 831-839. https://doi.org/10.5897/AJB10.066

Scott, J. G., Alefantis, T. G., Kaufman, P. E., & Rutz, D. A. (2000). Insecticide resistance in house flies from caged-layer poultry facilities. Pest Manag Sci., 56(2), 147–153.

Semiatizki, A., Weiss, B., Bagim, S., Rohkin-Shalom, S., Kaltenpoth, M., & Chiel, E. (2020). Effects, interactions, and localization of Rickettsia and Wolbachia in the house fly parasitoid, Spalangia endius. Microb. Ecol., 80, 718–728. https://doi.org/10.1007/s00248-020-01520-x

Shono, T., Zhang, L., & Scott, J. G. (2004). Indoxacarb resistance in the house fly, Musca domestica. Pestic. Biochem. Physiol., 80, 106–112.

Tuncel, N. B., & Yılmaz, N. (2010). Determination of Phenolic Acid Composition of Some Herbs from Kaz Mountains, Turkey by High Performance Liquid Chromatography. Akademik Gıda, 8(3), 18-23.

Turan, M., & Mammadov, R. (2018). Antioxidant, Antimicrobial, Cytotoxic, Larvicidal and Anthelmintic Activities and Phenolic Contents of Cyclamen alpinum. Pharmacology & Pharmacy, 9, 100-116.

Vatandoost, H., Dehkordi, A. S., Sadeghi, S. M. T., Davari, B., Karimian, F., Abai, M. R., & Sedaghat, M. M. (2012). Identification of chemical constituents and larvicidal activity of Kelussia odoratissima Mozaffarian essential oil against two mosquito vectors Anopheles stephensi and Culex pipiens (Diptera: Culicidae). Experimental Parasitology, 132, 470–474. http://dx.doi.org/10.1016/j.exppara.2012.09.010

WHO Global. (2019). World malaria report 2019. WHO Regional Office for Africa. Available from: https://www.who.int/news-room/fact-sheets/detail/malaria

Yılmaz, U., Kaya, H., Turan, M., Bir, F., & Şahin, B. (2019). Investigation the Effect of Hypericum perforatum on Corneal Alkali Burns. Cutaneous and Ocular Toxicology. 38, 356-359. https://doi.org/10.1080/15569527.2019.1622560

Zhao, Z., & Moghadasian, M.H., (2008). Chemistry, natural sources, dietary intake and pharmacokinetic properties of ferulic acid: A review. Food Chemistry, 109(4), 691-702.

Downloads

Published

2021-06-15

How to Cite

Turan, M., & Mammadov, R. (2021). Phenolic Compounds Screening and Potential of Larvicidal Activity of Water Extract of Cyclamen cilicium Boiss. & Heldr . Natural Products and Biotechnology, 1(1), 1–8. Retrieved from https://natprobiotech.com/index.php/natprobiotech/article/view/6

Issue

Section

Research Article