Biological Evaluation of Aminoindane Derivatives as Antibacterial Agents
Keywords:
Aminoindane, MRSA, A. baumannii, AntibacterialAbstract
The aminoindane ring is the most studied skeletal structure in synthetic chemistry, in the synthesis of intermediates and because it is a biologically active molecule. Bioactive properties of the aminoindane ring include antibacterial, antiviral, antiapoptotic, antipyretic, analgesic, anticonvulsant, and antiparkinsonian activities. The most important bacteria in responsibility of nosocomial infections obtained in hospitals across the world are Acinetobacter baumannii and Methicillin-resistant Staphylococcus aureus. MRSA and A. baumannii have become resistant to numerous antibiotics. The development of novel antibiotic drugs is thus urgently needed. This study as investigated at the antibacterial effects of previously synthsized compounds 8 and 9 on A. baumannii and MRSA disease microorganisms. Studies on antibacterial activity employed disc diffusion and microdilution techniques. The investigation revealed that whereas the pathogenic organisms of compounds 8 and 9 formed zones that inhibited bacterial development, no zones formed in compounds 5, 6, and 7. Compounds 8 and 9's zone diameters against A. baumannii and MRSA were estimated to be between 0.7 and 1.0 mm. The range of MIC values was 3.9025–15.625 μg/ml. These results was envisaged the conclusion that derivatives with an aminoindane ring may function as MRSA and A. baumannii antibacterial agents.
References
Barlow, J. W., & Walsh, J. J. (2008). Synthesis and evaluation of 4-amino-3,4-dihydro-2H-naphthalen-1-one derivatives as mast cell stabilising and anti-inflammatory compounds. European Journal of Medicinal Chemistry, 43(12), 2891-2900. https://doi.org/10.1016/j.ejmech.2008.02.009
Barlow, J. W., & Walsh, J. J. (2010). Synthesis and evaluation of dimeric 1,2,3,4-Tetrahydro-naphthalenylamine and Indan-1-ylamine derivatives with mast cell-stabilising and anti-allergic activity. European Journal of Medicinal Chemistry, 45(1), 25-37. https://doi.org/10.1016/j.ejmech.2009.09.020
Bertolini, G., Vecchietti, V., Mabilia, M., Norcini, G., Restelli, A., & Santangelo, F. (1992). Dopamine receptor agonists. I. Synthesis and pharmacological evaluation of 4-aryl-substituted analogues of 6,7-dihydroxy-2-amino tetralin (6,7-ADTN) and related indane compounds. European Journal of Medicinal Chemistry, 27(7), 663-672.
Chazalette, C., Masereel, B., Rolin, S., Thiry, A., Scozzafava, A., Innocenti, A., & Supuran, C. T. (2004). Carbonic anhydrase inhibitors. Design of anticonvulsant sulfonamides incorporating indane moieties. Bioorganic & Medicinal Chemistry Letters, 14(23), 5781-5786. https://doi.org/10.1016/j.bmcl.2004.09.061
Cheung, G. Y. C., Bae, J. S., & Otto, M. (2021). Pathogenicity and virulence of Staphylococcus aureus. Virulence, 12(1), 547-569. https://doi.org/10.1080/21505594.2021.1878688
Coppola, M., & Mondola, R. (2013). 5-Iodo-2-aminoindan (5-IAI): Chemistry, pharmacology, and toxicology of a research chemical producing MDMA-like effects. Toxicology Letters, 218(1), 24-29. https://doi.org/10.1016/j.toxlet.2013.01.008
Dubrovin, A. N., Mikhalev, A. I., Ukhov, S. V., Goldshtein, A. G., Novikova, V. V., Odegova, T. F., & Makhmudov, R. R. (2015). Synthesis, Properties, and Biological Activities of 2-Methyl- and 2-Styrylquinoline-4-Carboxylic Acids. Pharmaceutical Chemistry Journal, 49(5), 309-312. https://doi.org/10.1007/s11094-015-1275-z
Gormez, A., Bozari, S., Yanmis, D., Gulluce, M., Sahin, F., & Agar, G. (2015). Chemical Composition and Antibacterial Activity of Essential Oils of Two Species of Lamiaceae against Phytopathogenic Bacteria. Polish Journal of Microbiology, 64(2), 121-127.
Güller, P., Atmaca, U., Güller, U., Çalışır, U., & Dursun, F. (2021). Antibacterial properties and carbonic anhydrase inhibition profiles of azido sulfonyl carbamate derivatives. Future Medicinal Chemistry, 13(15), 1285-1299. https:/doi.org/10.4155/fmc-2020-0387
Jiang, X. D., Chen, L., Lu, X. L., Liao, L., Wang, W. G., & Huang, X. C. (2019). Novel sulfamoylamino-containing cephalosporin derivatives, and their in vitro antibacterial properties. Tropical Journal of Pharmaceutical Research, 18(12), 2617-2621. https://doi.org/10.4314/tjpr.v18i12.22
Kyriakidis, I., Vasileiou, E., Pana, Z. D., & Tragiannidis, A. (2021). Acinetobacter baumannii Antibiotic Resistance Mechanisms. Pathogens, 10(3), Article 373. https://doi.org/10.3390/pathogens10030373
Osowole, A., & Daramola, A. O. (2012). Synthesis, spectroscopic characterization and In-vitro antibacterial properties of some metal(II) complexes of schiff bases containing aminoindane moiety. Applied Chemistry - Elixir International Journal, 47, 8662-8666.
Ozgeris, B., Aksu, K., Tumer, F., & Goksu, S. (2015). Synthesis of Dopamine, Rotigotin, Ladostigil, Rasagiline Analogues 2-Amino-4,5,6-Trimethoxyindane, 1-Amino-5,6,7-Trimethoxyindane, and Their Sulfamide Derivatives. Synthetic Communications, 45(1), 78-85. https://doi.org/10.1080/00397911.2014.957321
Özgeriş, F., Yıldırım, M., Görmez, A., & Ozgeris, B. (2021). A Novel Nicotinoyl Thiourea Manganese Complex: Synthesis, Characterization, and Biological Activity Studies. International Journal of Chemistry and Technology. https://doi.org/10.32571/ijct.940169
Patel, N. B., & Patel, J. C. (2010). Synthesis and antimicrobial activity of 3-(1,3,4-Oxadiazol-2-yl)quinazolin-4(3H)-ones. Scientia Pharmaceutica, 78(2), 171-193.
Pompilio, A., Scribano, D., Sarshar, M., Di Bonaventura, G., Palamara, A. T., & Ambrosi, C. (2021). Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms, 9(7), Article 1353. https://doi.org/10.3390/microorganisms9071353
Radadia, V. R., Purohit, D. M., & Patolia, V. N. (2005). Synthesis and antimicrobial activity of 10-N-(arylsulpho/aroyl)-7-methyl phenothiazine-1-carboxylic acids. Indian Journal of Heterocyclic Chemistry, 15(1), 85-86.
Sainsbury, P. D., Kicman, A. T., Archer, R. P., King, L. A., & Braithwaite, R. A. (2011). Aminoindanes - the next wave of 'legal highs'? Drug Testing and Analysis, 3(7-8), 479-482. https://doi.org/10.1002/dta.318
Thiry, A., Ledecq, M., Cecchi, A., Dogne, J. M., Wouters, J., Supuran, C. T., & Masereel, B. (2006). Indanesulfonamides as carbonic anhydrase inhibitors. Toward structure-based design of selective inhibitors of the tumor-associated isozyme CA IX. Journal of Medicinal Chemistry, 49(9), 2743-2749. https://doi.org/10.1021/jm0600287
Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., Fowler, V. G. (2019). Methicillin-resistant Staphylococcus aureus: an overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203-218. https://doi.org/10.1038/s41579-018-0147-4
Ugliarolo, E. A., Gagey, D., Lantano, B., Moltrasio, G. Y., Campos, R. H., Cavallaro, L. V., & Moglioni, A. G. (2012). Synthesis and biological evaluation of novel homochiral carbocyclic nucleosides from 1-amino-2-indanols. Bioorganic & Medicinal Chemistry, 20(19), 5986-5991. https://doi.org/10.1016/j.bmc.2012.07.028
Ukhov, S. V., Syropyatov, B. Y., Novikova, V. V., Balabash, V. A., Shustov, A. S., & Odegova, T. F. (2011). Synthesis and Biological Activity of Substituted 2-Iminobenzo F Coumarin-3-Carboxylic Acid Amides. Pharmaceutical Chemistry Journal, 45(4), 228-230.
Yang, Z. N., Suomalainen, T., MayraMakinen, A., & Huttunen, E. (1997). Antimicrobial activity of 2-pyrrolidone-5-carboxylic acid produced by lactic acid bacteria. Journal of Food Protection, 60(7), 786-790. https://doi.org/10.4315/0362-028x-60.7.786
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Natural Products and Biotechnology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.